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Introduction

Analytical geometry has no strictly defined contents. It
is the method but not the subject under investigation,
that constitutes the leading feature of this branch of
geometry.

The essence of this method consists in that geometric
objects are associated in some standard way! with equa-
tions (or systems of equations) so that geometric relations
of figures are expressed through properties of their equa-
tiomns.

For instance, in case of Cartesian coordinates any
straight line in the plane is uniquely associated with a
linear equation

az + by + ¢ = 0.

The intersection of three straight lines at one point is
expressed by the condition of compatibility of a system
of three equations which specify these lines.

Due to a multipurpose approach to solving various
problems, the method of analytic geometry has become
the leading method in geometric investigations and is
widely applied in other fields of exact natural sciences,
such as mechanics and physics.

Analytical geometry joined geometry with algebra
and analysis —the fact which has told fruitfully on
further development of these three subjects of mathe-
matics,
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The principal ideas of analytical geometry are traced
back to the French mathematician, René Descartes
(1596-1650), who in 1637 described the fundamentals of
its method in his famous work “Geometrie”.

The present book, which is a course of lectures, treats
the fundamentals of the method of analytic geometry as
applied to the simplest geometric objects. It is designed
for the university students majoring in physics and
mathematics.



Chapter 1

Rectangular Cartesian Coordinates
in a Plane

Sec. 1-1. Introducing Coordinates in a Plane

Let us draw in the plane two mutually perpendicular
intersecting lines Oz and Oy which are termed coordinate
azes (Fig. 1). The point of intersection O of the two axes is
called the origin of coordinates, or simply the origin. It

\y y

Ay A

Y

Fig. 1 Fig. 2.

divides each of the axes into two semi-axes. One of the
semi-axes is conventionally called positive (indicated by an
arrow in the drawing), the other being nregative.

Any point 4 in a plane is specifiedihy alpair of numbers—
called the rectangular coordinates of the point A—ihe
abscissa (xr) and the ordinate (y) according to the follow-
ing rule.

Through the point 4 we draw a straight line parallel to
the azis of ordinates (Oy) to intersect the aris of abscissas
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(Ox) at some point A4, (Fig. 2). The abscissa of the point
A should be understood as a’number'z whose absolute val-
ue is equal to the distance from O to A, which is positive
if A, belongs to the positive semi-axis and negative if 4,
belongs to the negative semi-axis. If the point 4, coincides
with the origin, then we put z equal to zero.

| Y

Fig. 3. Fig. 4.

The ordinate (y) of the point 4 is determined in a simi-
lar way.

We shall use the following notation: 4 (z, y) which
means that the coordinates of the point 4 are = (abscissa)
and y (ordinate).

The coordinate axes separate the plane into four right
angles termed the quadrants as shown in Fig. 3. Within
the limits of one quadrant the signs of both coordinates
remain unchanged. As we see in the figure, the quadrants
are denoted and called the first,jsecond, third, and fourth
as counted anticlockwise beginning with the quadrant in
which both coordinates are positive.

If a point lies on the z-azis (i.e. on the axis of abscis-
sas) then its ordinate y is equal to zero; if a pointjlies on
the y-axis, (i.e. on the axis of ordinates), then its abscissa
z is zero. The abscissa and ordinate of the origin (i.e. of
the point O) are equal to zero.

The plane on which the coordinates z and y are intro-
duced by the above method will be called the zy-plane. An
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arbitrary point in this plane with the coordinates z and
y will sometimes be denoted simply (z, y)-

For an arbitrary pair of real numbers x and y there exists
a unique point A in the xy-plane for which x will be its
abscissa and y its ordinate.

Indeed, suppose for definiteness z >0, and y <CO0.
Let us take on the positive semi-axis z a point 4, at the

(a) (b) (c)
Fig. 5.

distance z from the origin 0, and a point 4, on the negative
semi-axis y at the distance | y | from O. We then draw
through the points A, and 4, straight lines parallel to the
axes y and z, respectively (Fig. 4). These lines will inter-
sect at a point A whose abscissa is obviously z, and ordi-
nate is y. In other cases (z << 0,y >0; 2 >0, y >0 and
z<<0, y<<0) the proof is analogous.

Let us consider several important cases of analytical
representation of domains on the zy-plane with the aid of
inequalities. A set of points of the zy-plane for which
z >a is a half-plane bounded by a straight line passing
through the point (a, 0) parallel to the axis of ordinates
(Fig. 5, a). A set of points for which ¢ << 2z << b represents
the intersection (i.e. the common portion) of the half-
planes specified by the inequalities a << x and z << b.
Thus, this set is a band between the straight lines paral-
lel to the y-axis and passing through the points (a, 0)
and (b, 0) (Fig. 5, b). A set of points for which a << z << b,
¢ <y <<d is arectangle with vertices at points (a, c),
(a, d), (b, o), (D, d) (Fig. 5, ¢).
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A InJconclusion, let us solve the following problem: Find
the area of a triangle with vertices at poinis A, (z;, ¥y,
\y A, (-Tz_, Ys), As (%3, Ys) Let
the jtriangle be located rela-
tive to the coordinate sys-
tem fas is shown in Fig. 6.
In this position its area is
equal to the difference be-
tween thelarea of the trape-
zium B;A,4 3B, and the sum
of the areas of the trapezia

"X BlAlAsz and B2A2A3Ba.
The bases of the trape-
Tig. 6. zium B,A4,4 ;B are equal to
Y, and y;, its altitude being

equal to x3—x,. Therefore, the area of the trapezium

S (ByA AsBy) = 5 (ya+s) (25— 23).
The areas of two other trapezia are found analogously:
S (B Ay43B5) = 5 (Yo +y1) (23— 1),
S (ByAgAgBy) = - (Y3 + ) (%5 — %y).
The area of the triangle A,4,43:
S (A44,45) =5 (Y3 +2) (25— 1) —
—% Y2+ 1) (23— ) —‘;' (ys+y2) (23— 25) =
= % (ZoYs— Y34+ T1ys — Yoz + LYy — Y1)

This formula can be rewritten in a more convenient
form:

S (A1 As45) = 5 (Y5 —b1) (82— 1) — (45— Y) (B — 21))-

Though the above formula for computing the area of
the triangle has been derived for a particular location of
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the triangle relative to the coordinate system, it yields
a correct result (to within a digit) for any position of the
triangle. This will be proved later on (in Sec. 2-5).

EXERCISES

1. What is the location of the points of the zy-plane for
which (a) |z | =4a, 0) |z |=1]y?

2. What is the location of the points of the zy-plane
for which (a) |z | <<a, ) |z]<a, |y |l<<®?

3. Find the coordinates of a poinl symmetrical to the
point A (z, y) about the z-axis (y-axis, the origin).

4. Find the coordinates of a point symimetrical to the
point A (x, y) about the bisector of the first (second)
quadrant.

5. How will the coordinates of the point 4 (z, y) change
if the y-axis is taken for the z-axis, and vice versa?

6. How will the coordinatesof the point 4 (z, y) change
if the origin is displaced into the point A, (z,, y,)
without changing the directions of the coordinate axes?

7. Find the coordinates of the mid-points of the sides
of a square taking its diagonals for the coordinate axes.

8. It is known that three points (zy, y), (%4, ¥s), (Z3, ¥3)
are collinear. How can one find out which of these points
is situated belween the other two?

See. 1-2. The Distance Between Points

Let there be given on the zy-plane two points: A; with
the coordinates x;, y; and A, with the coordinates z,, y,.
It is required to express the distance between the poinis A,
and A, in terms of their coordinates.

Suppose z, % z, and y, 5= y,. Through the points A4,
and A, we draw straight lines parallel to the coordinate
axes (Fig. 7). The distance between the points A4 and 4,
isequal to | y; — y, |, and the distance between the points
A and 4, is equal to | 2, — z, |. Applying the Pythagore-
an theorem to the right-angled triangle 4,44,, we get

(@ — 2)* + (g1 — yo)* = @2, ()
where d is the distance between the points A, and 4,.
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Though the formula () for determining the distance
between points has been derived by us proceeding from
the assumption that x; = z,, Y1 5= Y., it Temains true for
other cases as well. Indeed, for =, = z,, y, 5%y, d is
equal to | y; — y, | (Fig. 8). The same result is obtained
using the formula (x). For z; 5= x5, J, = ¥, we get a simi-

r L

A ———o 4

L LA
|l N\, %
n - o g

Fig. 7. bFig. 8.

lar result. If z, = 2,, y; = y, the points A, and 4, coin-
cide and the formula (s) yields d = 0.

As an exercise, let us find the coordinates of the centre of
a circle circumscribed about a triangle with the vertices

(331, yl)i (3;27 yz), and (xs’ ys)- R
Let (z, y) be the centre of the circumcircle. Since it

is equidistant from the vertices of the triangle, we derive
the following equations for the required coordinates of the
centre of the circle (z and y). Thus, we have

@— 2+ (y —y)? = (@ — 25 + (y — y2)%
@—2)+ (y —y)® = (@ — z)* + (y — ys),
or after obvious transformations
2(z—z) +2(Y—Y) Y=23+ Y3 — 23— U1
2(zs—2) 242 (ys—y) ¥y =23+ ys— 2 — ;.

Thus, we have a system of two linear equations for
determining the unknowns z and y.
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EXERCISES

1. Find on the z-axis the coordinates of a point equi-
distant from the two given points 4 (2, y,), and
B (z5, y,). Consider the case 4 (0, a), B (b, 0

2. Given the coordinates of two vertices 4 and B of an
equilateral triangle ABC. How to find the coordinates of
the third vertex? Consider the case 4 (0, a), B (a, 0).

3. Given the coordinates of two adjacent vertices A
and B of a square ABCD. How are the coordinates of the
remaining vertices found? Consider the case A (az, 0),
B (0, d).

4. What condition must be satisfied by the coordinates
of the vertices of a triangle ABC so as to obtain a right-
angled triangle with a right angle at the vertex C?

5. What condition must be satisfied by the coordinates
of the vertices of a triangle ABC so that the angle A
exceeds the angle B?

6. A quadrilateral ABCD is specified by [the coordi-
nates of its vertices. How to find out whether or not is it
inscribed in a circle?

7. Prove that for any real a, a,, a,, b, by, b, there
exists the following inequality

V(@ —ayE+ (01— 0P+ V (a,—~a)* + (b — 02>
>V(_ai — a,)%+ (by —b,)?.
To what geometrical fact does it correspond?

Sec. 1-3. Dividing a Line Segment
in a Given Ratio

Let there be given two different points on the zy-plane:
A, (x1, y1) and A, (x4, Y,). Find the coordinates x and y
of the point A which divides the segment A A, in the ratio

: A

15 A,

Suppose the segment A4, is not parallel to the z-axis.
Projecting the points 4,, 4, A, on the y-axis, we have
(Fig. 9)

A4, 44, A

2—0406
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Since the points 4;, A,, A have the same ordinates as
the points 4,, 4,, 4, respectively, we get

ZlA_=|y1—yl, Zzg=|y—y2|.

Consequently,

b=yl _ M
ly—ye | Ay *

Since the point A lies between A, and A,, y, — y and

y — Yy, have the same sign.
y Therefore

7 | y1—y | _y1—‘y__._7\_1

A1 A1 ly—ya |~ y—ya A~

Whence we find

A _J A ;/:’ﬂ“Lly2 ()

M+dy T
- 1f the segment A,A, is
Az A, parallel to the z-axis, then

h =Y =Y
_FT > X The same result is yielded
by the formula () which is
thus true for any [positions
of the points A4, and A4,.
The abscissa of the point 4 is found analogously. For
it we get the formula

Fig. 9.

= Agy 4 M2,y
A+A,

Ay A
=t_ 2 = —7.
Tty 0 Then gy =1

Consequently, the coordinates of any point C of a segment
with the end-points A (z;, y,) and B (z,, y,) may be
represented as follows

z=0—=taz +tr,, y=01 -y + gy, 0K<IL

Let us find the location of points C (z, y) for t << O
and £ > 1. To do this in case of { << 0 we solve our for-

We put
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mulas with respect to z;, y,. We get

1z (—t)z
.’1:1———-———1( Z 2,
Loy (—t
v, y‘ii( t )yz.

Hence, it is clear that the point A (z,, y,) is situated op
the line segment CB and divides this segment in the ratio
(—1%): 1. Thus, for t << 0 our
formulas yield the coordi-
natesof the point lying on the
extension of the segment AB
beyond the point A. It is
proved in a similar way that
for £ > 1 the formulas yield
the coordinates of the point
located on the extension of
the segment AB beyond the
point B.

As an exercise, let us
prove Ceva’s theorem from _
elementary geometry. It Fig. 10.
states: If the sides of airiangle
are divided in the ratio a : b, ¢ : a, b : ¢, taken in order of
moving round the iriangle (see Fig. 10), then the segments
joining the vertices of the triangle to the poinis of division
of the opposite sides intersect in one point.

Let 4 (z;, y1), B (%5, ¥s), and C (z3, y;) be the vertices
of the triangle and 4, B, C the points of division of the

opposite sides (Fig. 10). The coordinates of the point 4 are:

x___bxr‘r‘c% __bys+cys

bte b+ec

Let us divide the line segment AA in the ratio (b4 ¢) : a.
Then the coordinates of the point of division will be

_ 0z 4-bxy+tcag
T atbfe
— W11 bya+-cys
Y="aFbFec -
PAJ
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If the segment BB is divided, in the ratio (a + ¢) : b,
then we get the same coordinates of the point of division.
The same coordinates are obtained when dividing the
segment CC in the ratio (@ 4 b) : c. Hence, the segments
AA, BB, and CC have a point in common, which was
required to be proved.

Let us note here that the theorems of elementary geome-
try on intersecting medians, bisectors, and altitudes in the
triangle are particular cases of Ceva’s theorem.

EXERCISES

1. Given the coordinates of three vertices of a paral~
lelogram: (x;, ¥1), (Zas Ys), and (3, y3). Find the coordi-
nates of the fourth vertex and the centroid.

2. Given the coordinates of the vertices of a triangle:
(T1s ¥1)s @3y ¥a), and (3, y3). Find the coordinates of the
point of intersection of the medians.

3. Given the coordinates of the mid-points of the sides
of a triangle (z,, y;), (®s, ¥,), and (x5, y3). Find the coor-
dinates of its vertices.

4. Given a triangle with the vertices (z;, yy), (Z3, ¥2),
and (z3, y5). Find the coordinates of the vertices of a homo-
thetic triangle with the ratio of similitude A and the
centre of similitude at point (zo, ¥,).

5. Point 4 is said to divide the line segment A4,
externally in the ratio A, : A, if this point lies on a straight
line joining the points 4; and A, outside the segment
A,A, and the ratio of its distances from the points 4,
and 4, is equal to A; : A,. Show that the coordinates of
the point A are expressed in terms of the coordinates
(x5, Y1), (Z2, Y,) of the points 4, and A, by the formulas

_ Mo — Mz _ My —My,
R Ve PR A W P

6. Two line segments are specified by the coordinates
of their end-points. How can we find out, without using
a drawing, whether the segments intersect or not?

7. The cenire of gravity of two masses p, and p, situated
at points 4, (2, ¥;) and A, (2,, ¥,) is defined as a point 4
which divides the segment 4,4, in the ratio p,: p,.
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Thus, its coordinates are:

7= B1Z1 - Bay y = 1Yy - Po¥p
pitp, Pit-Pa T

The centre of gravity of n masses p; situated at points 4;
is determined by induction. Indeed, if A, is the centre
of gravity of the first » — 1 masses, then the centre of
gravity of all r masses is determined as the centre of
gravity of two masses: p, located at point A4,, and
By =+ - .« . 4 pn-g, situated at point A,. We then derive
the formulas for the coordinates of the cenire of gravity
of the masses p; situated at points A4; (z;, y;):

p=M%1 Tt lUnZn _ Mt layn
m+-.oFpn I R ol C

Sec. 1-4. The Notion of the Equation of a Curve.
The Equation of a Circle

Let there be given a curve on the zy-plane (Fig. 11).
The equation ¢ (z, y) = 0 is called the equation of a curve
in the implicit form if it is satisfied by the coordinates

AY fy A

/ ;

0] X 0 x

Fig. 11. Fig. 12

(z, y) of any point of this curve and any pair of numbers
z, y, satisfying the equation ¢ (x, y) = O represents the
coordinates of a point onthe curve. As is obvious, a curve
is defined by its equation, therefore we may speak of
representing a curve by its equation,
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In analytic geometry two problems are often considered:
(1) given the geometrical properties of a curve, form its
equation; (2) given the equation of a curve, find out its
geometrical properties. Let us consider these problems as
applied to the circle which is the simplest curve.

Suppose that 4, (z,, y,) is an arbitrary point of the
zy-plane, and R is any positive number. Let us form the
equation of a circle with centre 4, and radius R (Fig.12).

Let A (z, y) be an arbitrary point of the circle. Its
distance from the centre 4, is equal to R. According to
Sec. 1-2, the square of the distance of the point A from
4, is equal to (x — z,)> + (y — y,)® Thus, the coordi-
nates z,y of any point 4 of the circle satisfy the equation

(@ — 20> + (y — yo)* — R* = 0. (*)

Conversely, any point A whose coordinates satisfy the
equation (*) belongs to the circle, since its distance from
A, is equal to R.

In conformity with the above definition, the equation (x)
is an equation of a circle with centre A, and radius R.

We now consider the second problem for the curve
given by the equation

2+ yP+ 20+ 2y +c=0 (@ + b —c>0).

This equation can be rewritten in the following
equivalent form:

(@+ap+(y+0)— (V@@ +5E—c)'=0.

Whence it is seen that any poiut (z, y) of the curve i

found at one and the same distance equal to }/a® -- 52 —¢
from the point (—a, —b), and, hence, the curve is a circle
with centre (—a, —b) and radius )/ a® +b% — c.

Let us consider the following problem as an example
illustrating the application of the method of analytic
geometry: Find the locus of points in a plane the ratio of
whose distances from two given points A and B is constant
and is equal to k== 1. (The locus is defined as a figure
which consists of all the poinls possessing the given
geometrical property. In the case under consideration we
speak of a set of all the points in the plane for which the
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ratio of the distances from the two given points 4 and B
is constant).

Suppose that 2a is the distance between the points A
and B. We then introduce a rectangular Cartesian coordi-
nate system on the plane taking the straight line AB for
the z-axis and the midpoint of the segment AB for the
origin. Let, for definiteness, the point A be situated on
the positive semi-axis #. The coordinates of the point A4
will then be: z = a, y = 0, and the coordinates of the
point B will be: x = — a, y = 0. Let (z, y) be an arbitra-
ry point of the locus. The squares of its distances from
the points 4 and B are respectively equal to (z — @)% +
-+ y? and (z + a)? + y® The equation of the locus is

(x—a)®4-y® — kz
(z+a)®+y2
or

x22 - y2 4 —— k +1) ar+a2=0.

The locus represenis a czrcle (Apollonius’ circle).

Let us consider another problem as an example of
forming the equation of a circle. Given are the equations
of two circles

24+ 4+ ar+ by + e =0,
4 Y+ agr + by + ¢, =0

and a point 4 (z,, y,). Form the equation of a circle passing
through the points of intersection of the given circles and
the point A.

The usual solution of this problem consists in that we
determine the points of intersection of the given circles
and then find the equation of the circle passing through
the found points of intersection and the given point 4.
Let us consider a more “economical’j way of solving
this problem.

For any A and p the equation

A@® 4 4 ax + by + o) + p @y az-
+ b2y + 62) = 0’

represents a circle if A 4 p 5= 0. This circle passes
through the points of intersection of the given circles,
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since the coordinates of these points reduce to zero both
terms of the left-hand side of the equation. If we select
A, u so that the coordinates of the point A satisfy this
equation, then we shall get the required circle. As is
obvious, the following choice will suit

A=z +y3 -+ @z, + by + ¢y,
—u=a;+yi+ax;+ by, +ey.

Geometrically, it is clear that the problem has no solution
if the point A lies on the straight line joining the points
of intersection of the given circles. Analytically, it is
expressed by the fact that the equation obtained does not
contain the term 2% - y2.

EXERCISES

1. What peculiarities in the position of the circle
22+ 2a+ 20+ c=0 (@®+ b2 —c >0)

relative to the coordinate system take place if

Ma=0; 2 b=0; B c=0; 4) a=0, b=0
©®)a=0,¢c=0; 6) b=0, ¢c =0?

2. Show that if we substitute in the left-hand member
of the equation of a circle the coordinates of any point
lying outside the circle, then the square of the length of
a tangent drawn from this point to the circle is obtained.

3. The power of a point A with reference Lo a circle is
defined as the product of the segments of a secant drawn
through the point A taken with plus for outside points
and with minus for inside points. Show that the left-
hand member of the equation of a circle 2?2 4 y?
+ 2ax 4+ 2by 4 ¢ = 0 gives the power of this point
with reference to a circle when the coordinates of an
arbitrary point are substituted in it.

4, Form the equation of the locus of points of the
zy-plane the sum of whose distances from two given points
Fy (c, 0) and F, (—c¢, 0) is constant and is equal to 2a (the
ellipse). Show that the equation is reduced to the form

28 2
=+ #=1, where b = g% — 2,
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5. Form the equation of the locus of points of the zy-
plane the difference of whose distances from two given
points Fy (c, 0) and F, (—c¢, 0) is constant and is equal to
2a (the hyperbola). Show that the equation is reduc:d lo

the form z—: — ¥ _ 1, where b = ¢® — o
a b2
6. Form the equation of the locus of points of the xy-
plane which are equidistant from the point F (0, p) and
the z-axis (the parabola).

Sec. 1-5. The Equation of a Curve
Represented Parametrically

Suppose a point 4 moves along a curve, and by the
time ¢ its coordinates are: £ = @ () and y =1 (). A sys-
tem of equations

z=0), y="v) f

specifying the coordinates of
an arbitrary point on the
curveasfunctionsoftheparam-
eter ¢ is called the equation
of a curve in parametric form.

The parameter ¢ is not 0
necessarily time, it may be
any other quantity charac-
terizing the position fof a
point on the curve.

Let us now form the equ- Fi

. . . "ig. 13.
ation of a circle in para-
metric form.

Suppose the centre of a circle is situated at the origin,
and the radius is equal to R. We shall characterize the
position of point A on the circle by the angle a formed
by the radius 04 with the positive semi-axis z (Fig. 13).
As is obvious, the coordinates of the point 4 are equal to
R cos a, R sin a, and, consequently, the equation of the
circle has such a form:

| v

S

Y

z=Rcosa, y=Rsina,
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Having an equation of a curve in parametric form:

=9 (), y =1 @), (»)
we can obtain its equation in implicit form:
f (=, y) = 0.

To this effect it is sufficient to eliminate the parameter ¢
from the equations (x), finding it from one equation and
substituting into the other, or using another method.

For instance, to get the equation of a circle represented
by equations in parametric form (i.e. implicitly) it is suf-
ficient to square both equalities and add them termwise.
We then obtain the familiar equation 22 + y? = R2.

The elimination of the parameter from the equations
of a curve represented parametrically not always yields
an equation in implicit form in the sense of the above
definition. It may turn out that it is satisfied by the
points not belonging to the curve. In this connection let
us consider two examples.

Suppose a curve y is given by the equations in para-
metric form

x=acost y=="bsint, 0 Lt<<2m.

Dividing these equations by a and b, respectively, squar-
ing and adding them termwise, we get the equation
z2 y?
@t =1
This equation is obviously satisfied by all the points
belonging to the curve y. Conversely, if the point (z, y)
satisfies this equation, then there can be found an angle
t for which z/a = cos ¢, y/b = sin ¢, and, consequently,
any point of the plane which satisfies this equation, be-
longs to the curve y.
Let now a curve ¢ be represented by the following
equations
z=acosht y=>bsinhi, —oo <<t<<- o0,
where
cosh t = (e' +e)/2, sinh t = (¢! — e~?)/2.

Dividing these equations by a and b, respectively, and
then squaring them and subtracting termwise, we get the
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equation

2 _ ¥

a? bz~ Tt
The points of the curve y satisfy this equation. But not
any point which satisfies the equation belongs to y. Let
us, for instance, consider the point (—a, 0). We see that
it satisfies the equation, but does not belong to the curve,
since on the curve y a cosh ¢ 5= — a.

Sometimes the equation of a curve represented in
implicit form is understood in a wider way. One does not
require that any point satisfying the equation, belongs
to the curve.

EXERCISES
1. Show that the following equations in parametric form
z=Rcost+a, y=Rsint-+ b

represent a circle of radius R with centre at point (a, b).
2. Form the equation of a curve described by a point
on the line segment of length ¢ when the end-points of the

y

5 C
13
B @
TN - |
Yo ——
0 A * 0 T
Fig. 14. Fig. 15.

segment slide along the coordinate axes (the segment is
divided by this point in the ratio A : p). Take the angle
formed by the segment with the z-axis for the parameter.
What is the shape of the curve if 2 : p = 1?
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3. A triangle slides along the coordinate axes with two
of its vertices. Form the equation of the curve described
by the third vertex (Fig. 14).

4. Form the equation of the curve described by a point
on a circle of radius R which rolls along the z-axis
(Fig. 15). For the parameter take the path s covered by the
centre of the circle and suppose that at the initial moment
(s = 0) point 4 coincides with the origin.

5. A curve is given by the equation

ax? 4 bay + cy? + dx + ey = 0.

Show that, by introducing the parameter ¢ = y/x, we
can obtain the following equations of this curve in para-
metric form:

= — d—+et
e biF e

- dt+et?
y= T et btfct2e

Sec. 1-6. The Points of Intersection of Curves

Let there be given two curves in the ay-plane: the curve
v, represented by the equation

f] ($, y) = 0’
and the curve y, specified by the equation
f‘). (QI, I/) = 0‘

We now find the points of intersection of the curves y,
and y,, i.e. the coordinates of these points. Let 4 (z, y)
be the point of intersection of the curves y, and y,. Since
the point A lies on the curve y,, its coordinates satisfy
the equation f; (z, y) = 0. Also, since the point 4 lies on
the curve y,, its coordinates satisfy the equation f, (z,
y) = 0. Thus, the coordinates of any point of intersection
of the curves y, and vy, satisfy the system of equations

fl (2, y) =0, fz (x, y) = 0.

Conversely, any real solution of this system of equa-
tions yields the coordinates of one of the points of intersec-
tion of the curves, '
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If the curve y; is represented by the equation
fl (‘z’ y) = 0

and the curve y, is given by the equations in parametric
form

=09 (@), y=1v(@,

then the coordinates z, y of the points of intersection
satisfy a system of three equations

@y =0, z=9@ y=1vQ.
If both curves are represented parametrically
P:% =9 (), ¥y =" ();
Yo =@y (1), ¥ =1y (1),

then the coordinates z, y of the points of intersection
satisfy the following system of four equations:

=g (1), ¥y =P ®),
z = @, (1), ¥ =Y (7).

Example. Find the points of intersection of the circles
2 + y? = 2ax, 2+ y* = 20by.

Subtracting the equations termwise, we find az = by.
Substituting y = az/b in the first equation, we get

(1—}-—;172) 22— 2ax=0.

Whence
2ab?
z;=0, Te=ge
the corresponding ordinates being

2ba?
¥u=0, v=gTp.

The required points of intersection are (0,0) and
2ab? 2ha?
(55 i) -
Let us consider another example illustrating the inter-
section of curves. Suppose two curves (y, and y,) are
given. The curve y; is represented by an equation in
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implicit form

f (& y) =0,
where f (z, y) is a polynomial of degree not exceeding n.
The curve 7y, is specified by two egnations in parametric
form

=9 @), y="1v(@,

where @ (¢) and,y,(t) are polynomials;of degree not exceed-
ing m. Let the curves y, and y, have more than mnr
points of intersection. We aregoingto show that the curve
v, lies entirely on the curve y; in a sense that all of
its points satisfy the equation

Indeed, the algebraic equation f (¢ (z), } (£)) = 0 has
a degree not exceeding mr and has more than mnr roots.
As is known from algebra, such an equation is an identily,
i.e. it is satisfied for any z. This means that any point of
the curve y, satisfies the equation f (z, y) = 0, which
was required to be proved.

EXERCISES
1. What condition must be satisfied by the coefficients
of the equation of a circle
24yt 2ax 4 26y +c=0
so that the circle (a) does not intersect the z-axis; (b) in-
tersects the z-axis at two points; (c) touches the z-axis?
2. What condition must be satisfied by the coefficients
of the following equations of circles
22+ y? + 2ay2 + 2byy + ¢, = 0,
2 + Y426, + 2byy + ¢, = 0,
so that the circles (a) intersect; (b) touch each other?
3. Find the points of intersection of the two circles:
(a) zt + Yyt =1,
(b)x =cost+ 1, y =sin .
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4. Find the points of intersection of the two curves
represented parametrically

z=s241, z =12, }
y=s, } y=t+1.

5. Show that the points of intersection of the curves
ax®?4-by? = ¢, Az*+By*=C

are situated symmetrically about the coordinate axes.



Chapter 2
The Straight Line

Sec. 2-1. The General Equation
of a Straight Line

The straight line is the simplest and most widely used
line.

We shall now show that ary straight line has an equation
of the form

ar+by-c =0, (*)

where a, b, ¢ are constant. And conversely, if a and b are
not both zero, then there exists a straight line for which ()
is its equation.

Let A, (a;, b;) and A, (as, by) be two different points
situated symmetrically about a given straight line
(Fig. 16). Then *any point 4
AY (z, ¥) on this line is equidis-
Ay tant from the points 4, and

A,. And conversely, any
point A which is equidistant
from A, and A, belongs to
the straight line. Hence,

—1 /4 the equation of a straight
Az line is
_OT >x- @—a)+ y—0) =
(@ — as)® + (y — b))
Fig, 16. Transposing all terms of

the equation to the left-hand
side, removing the squared parentheses, and carrying out
obvious simplifications, we get

2 (ay—ay) x+ 2 (by—by) y+ (ai + b0} —a}—b3) =0.
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Thus, the first part of the statement is proved.

We now shall prove the second part. Let B, and B, be
two different points of the zy-plane whose coordinates
satisfy the equation (+). Suppose

oz + by+c =0
is the equation of the straight line B,B,. The system of
equations
ax +by --¢=0,
| ()
a4z +by+e =0
is compatible, it is a fortiori satisfied by the coordinates
of the point B;, as well as of B,.
Since the points B; and B, are different, they differ
in at least one coordinate, say y; 7= y,. Multiplying the

first equation of (*+) by @, and the second one by a,
and subtracting termwise, we get

(ba, — aby) y-+(cay — ac;) = O.

This equation as a corollary of the equations (#) is satis-
fied when y = y, and y = y,. But it is possible only if
ba, — aby = 0, ca; — ac, = 0.

Hence it follows that

a b c

a; by e’

which means that the equations () are equivalent. The
second part of the statement is also proved.

As was shown in Sec. 1-3, the points of a straight line
passing through (z,, y,) and (z,, y,) allow the following
representation

=0 —t)at+itzy, y=01— 1)y, + tys

Whence it follows that any straight line allows a paramet-
ric representation by equations of the form

=at+b, y=ct+d, —oo<t< oo.

Conversely, any such system of equations may be consid-
ered as equationsofa straight line in parametric form if a

3—-0406
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and ¢ are not both equal to zero. This straight line is
represented by the equation in implicit form

—bc—(y—da=0.

EXERCISES
1. Show that the equation
a’z®+ 2abzy +b%y? — ¢* = 0

represents a pair of straight lines. Find the equations
representing each line separately.

2. A curve y is represented by the equation o (z, y) =
= 0, where o is a polynomial of degree r with respect to
z and y. Show that if the curvey has more than r poinis
of intersection with a straight line, then it contains this
line entirely.

3. Show that if the coefficients of the equations of two
different straight lines

azx+ by +c¢=0, Ac+By+ C=90
satisfy the condition
Ab — aB = 0,

then the straight lines are parallel to each other, i.e.
they do not intersect.

4. The radical axis of two circles is the locus of points
whose powers with respect to the circles are equal (see
Exercise 3 of Sec. 1-4). Show that the radical axis is
a straight line. If the circles intersect, then it passes
through the points of intersection.

5. Show that the locus of points in the plane the differ-
ence of whose distances from two given points is constant
is a straight line.

6. Tnversion of a point with respect to a circle consists
in finding the point on the radial line through the given
point such that the product of the distances of the two
points from the centre of the circle is equal to the square
of the radius.

Consider a fixed circle, centre O and radius R, and any
point A. The point A’ on the ray 04 such that 04 -0OA’ =
= R? is called the inverse of 4 with respect to the fixed



Ch. 2. Straight Lin. 35

circle. The circle is called the circle of inversion, its
centre is the centre of inversion, its radius is called the
radius of inversion, and R? is called the constant of
inversion.

Suppose O is at the origin. Show that the coordinates of
the point A’ are expressed in terms of the coordinates of
the point 4 by the following formulas

'’ R%z r_ RZy
TEEE o VS Er

7. Show that the inverse of a circle is a circle or
a straight line (when a straight line?).

8. Find the coordinates of a point A* which is sym-
metrical to the point A (z,, Y, about the straight line
ar + by + ¢ = 0.

9. Show that three points (z;, y1), (%3, ¥s), (Z3, Ys) are
collinear if and only if

z oy, 1
Ty Yo 1
3 ys 1

Il
e

See. 2-2. Particular Cases of the Equation
of a Straight Line

Let us find out the peculiarities which happen in the
location of a straight line relative to the coordinate system
if its equation az -+ by + ¢ = 0 is of a particular form.

1. a = 0. In this case the equation of a straight line
can be rewritten as follows

T
Thus, all points belonging to the straight line have one
and the same ordinate (—c/b), and, consequently, the line
is parallel to the z-axis (Fig. 17, a). In particular, if ¢ = 0,
then the straight line coincides with the x-axis.

2. b = 0. This case is considered in a similar way.
The straight line is parallel to the y-axis (Fig. 17, b) and
coincides with it if ¢ is also zero.

3w
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3. ¢ = 0. The straight line passes through the origin,
since the coordinates of the latter (0, O) satisfy the equa-
tion of the straight line (Fig. 17, ¢).

A

AY

(6) (c)

Fig. 17.

4. Suppose all the coefficients of the equation of the
straight line are non-zero (i.e. the line does not pass
through the origin and is not parallel to the coordinate

(«.0)

0

Fig. 18.

axes). Then, multiplying
the equation by 1/c and put-
ting —c/la = a, — ¢/b = B,
we reduce it to the form

= +tg=1 ()

The coefficients of the
equation of a straight line
in such a form (which is
called the intercept form of
the equation of a straight
line) have a simple geomet-
rical meaning: a and p are
equal (up to a sign) to the

lengths of the line segments intercepted by the straighi
line on the coordinate axes (Fig. 18). Indeed, the straight
line intersects both the z-axis (y = 0) at point (a, 0),

and the

y-axis

(z = 0) at point (0, P).



Ch. 2. Straight Line 37

EXERCISES

1. Under whal condition does the straight line
ax +by +¢=0

intersect the positive semi-axis z (the negative semi-
axis z)?
2. Under what condition does the straight line
ax + by +¢=0
not intersect the first quadrant?
3. Show that the straight lines given by the equations
ax + by +¢=0, ax—by+¢ =0, b0,

are situated symmetrically about the z-axis.
4. Show that the straight lines specified by the equa-
tions
ar + by +¢=0; ax + by —c =0,

are arranged symmetrically about the origin.
5. Given a pencil of lines

ar + by + ¢ + Mgz + by + ¢) = 0.

Find out for what value of the parameter A is a line of the
pencil parallel to the z-axis (y-axis); for what value of A
does the line pass through the origin?

6. Under what condition does the straight line

ax + by +c¢=0

bound, together with the coordinate axes, an isosceles
triangle?

7. Show that the area of the triangle bounded by the
straight line

az+ by +c¢c=0 (a, b, c5%=0)

and the coordinate axes is

2
$=fir
8. Find the tangent lines to the circle
22 + y? -+ 2az -+ 2by = 0,
which are parallel to the coordinate axes.
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Sec. 2-3. The Equation of a Straight Line
in the Form Solved with Respect to .
The Angle Between Two Straight Lines

When moving along any straight line not parallel to the
y-axis x increases in one direction and decreases in the
other. The direction in which z increases will be called
positive.

Suppose we are given two straight lines g; and g, in the
zy-plane which are not parallel to the y-axis. The angle

A ,
AN ’ Y Ag

v ) P

0 X _OT

Iig. 19. Fig. 20.

. |

0 (g1, g,) formed by the line g, with the line g, is defined
as an angle, less than nt by absolute value, through which
the line g; must be turned so that the positive direction
on it is brought in coincidence with the positive direction
on g,. This angle is considered Lo he positive if the line
g, is turned in the same direction in which the positive
semi-axis z is turned through the angle n/2 until it coin-
cides with the positive semi-axis y (Fig. 19).

The angle between the straight lines possesses the following
obvious properties:

(1) 0 (g1, g2) = — 0 (g2 £0);

(2) 8 (g, g2) = 0 when and only when the lines are
parallel or coincide;

(3) 0 (83, 1) = 0 (g3, g2) + 0 (gas £1)-
Let

ar + by +¢=0
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be a straight line not parallel to the y-axis (b 5= 0).
Multiplying the equation of this line by 1/b and putting
—alb =k, —c/b = 1, we reduce it to the form
y="hkz + L (%)

The coefficients of the equation of a straight line in
this form have a simple geometrical meaning:

k is the tangent of the angle a formed by the straight line
with the z-axis;

l is the line segment (up to a sign) intercepted by the
straight line on the y-axis.

Indeed, let 4, (24, y4) and A, (z,, y,) be two points on
the straight line (Fig. 20). Then

— YY1 __ (k12+l)—(k-“71+l)= k.

Zo—Iy Tog—2y

The y-axis (z = 0) is obviously intersected by the line
at point (0, I).
Let there be given in the zy-plane two straight lines:
= klx + lla
Yy = ko + I,
Let us find the angle 8 formed by the second line with
the first one. Denoting by a, and e, the angles formed by
the straight lines with the z-axis, by virtue of property (3)
we get
9 = a2 h al.
Since the angular coefficients k%, = tan a;, ky, =
= tan a,, we get

tan 0 =—Fe—%1

T+ kiky °
Whence 0 is determined, since | 0 | << m.

EXERCISES

1. Show that the straight lines azx 4+ by + ¢ = 0 and
br — ay + ¢’ = 0 intersect at right angles.

2. What angle is formed with the z-axis by the straight
line

y=zcota, if —— <a<<0?
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3. Form the equations of the sides of a right-angled
triangle whose side is equal to 1, taking one of the sides
and the altitude for the coordinate axes.

4. Find the interior angles of the triangle bounded by
the straight lines ¢ + 2y =0, 2z + y =0, and z +
+y=1

9. Under what condition for the straight lines az 4
+ by = 0 and a,z + by = 0 is the z-axis the bisector of
the angles formed by them?

6. Derive the formula tan © =§ for the angle 8

formed by the straight line z=at 4 b, y = ¢t + d with
the z-axis.

7. Find the angle between the straight lines repre-
sented by the equations in parametric form:

T=at+b, } z=cit+ dy, }
Y =ast + by; y=cot+dy.

8. Show that the quadrilateral bounded by the straight
lines

+artby+c=0 (a, b, c5=0),

is a rhombus and the coordinate axes are its diagonals.

Sec. 2-4. The Parallelism
and Perpendicularity Conditions
of Two Straight Lines

Suppose we have in the zy-plane two straight lines
given by the equations

az + by + ¢ = 0,
axz + by + ¢, = 0.

Let us find out what condition must be satisfied by the
coefficients of the equations of the straight lines for these
lines to be (a) parallel to each other, (b) mutually perpen-
dicular.

Assume that neither of the straight lines is parallel to
the y-axis. Then their equations may be written in the
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form
y=rlax+1l, y="rkx+ 1,
where

L -
ki - b1 ’ kz b2 .
Taking into account the expression for the angle between
straight lines, we get the parallelism condition of two
straight lines:

ky— ky, =0,
or
aby — agby = 0. (*)
The perpendicularity corndition of straight lines:
1+ Ik, =0,
or
a,a, + by = 0. (*)

Though the conditions (x) and (**) are obtained in
the assumption that neither of the straight lines is paral-
lel to the y-axis, they remain true even if this eondition
is violated.

Let for instance, the first straight line be parallel
to the y-axis. This means that &, =0. If the second line
is parallel to the first one, then it is also parallel to the
y-axis, and, consequently, b, = 0. The eondition (+) is
obviously fulfilled. If the second line is perpendicular
to the first one, then it is parallel to the z-axis and,
consequently, a, = 0. In this case the condition (sx) is
obviously fulfilled.

Let us now show that if the condition () is fulfilled for
the straight lines, then they are either parallel, or coincide.

Suppose, b, = 0. Then it follows from the condition (+)
that b, 5= 0, since if b, = 0, then a, is also equal to
zero which is impossible. In this event the condition (x)
may be written in the following way

————= = or k1=k2,
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which expresses the equality of the angles formed by the
straight lines with the z-axis. Hence, the lines are either
parallel, or coincide.

If b, = 0 (which means that a, 5= 0), then it follows
from (+) that b, = 0. Thus, both straight lines are paral-
lel to the y-axis and, consequently, they are either paral-
lel to each other, or coincide.

Let us show that the condition (x+) is sufficient for the
lines to be mutually perpendicular.

Suppose b; 7= 0 and b, 5= 0. Then the condition ()
may be rewritten as follows:

or

1+ kyky = 0.

This means that the straight lines form a right angle,
i.e. they are mutually perpendicular.

If then b, = O (hence, a, 7 0), we get from the condi-
tion (xx) that a, = 0. Thus, the first line is parallel to
the y-axis, and the second one is parallel to the z-axis
which means that they are perpendicular to each other.

The case when b, = 0 is considered analogously.

EXERCISES

1. Show that two straight lines intercepting on the
coordinate axes segments of equal lengths are either
parallel, or perpendicular to each other.

2. Find the parallelism (perpendicularity) condition of
the straight lines represented by the equations in para-
metric form:

r=oyt-+a,, } T =yl +ay, }
Yy =Pt +0by, y = Pat + b,.

3. Find the parallelism (perpendicularity) condition for
two straight lines one of which is specified by the equation

ax + by + ¢ = 0,
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the other being represented parametrically:
z=at+ B, y=17yt+ 0
4. In a family of straight lines given by the equations
ax + by + ¢ + A (agx + boy +¢)) =0
(A, parameter of the family) find the Iine parallel (perpen-
dicular) to the straight line
ax + by + ¢ = 0.

Sec. 2-5. The Mutual Positions of a Straight Line
and a Point.
The Equation of a Straight Line
in the Normal Form

Suppose we have in the zy-plane a point 4’ (z’, y’) and
a straight line g:
ax + by + ¢ = 0.
If the point A’ lies on the line g, then
ax’ 4+ by’ 4+ ¢ = 0.

Let us find out what geometrical meaning has the expres-

sion
k@, y)=az + by + ¢
if the point A’ is not on the straight line.

Let A’ (&', y’) and A" (z", y") be two points not lying
on the line g. The coordinates of any point of the segment
A’A" can be represented in the form

rz=tr + 1 —=0", y=ty + (1 — )y, 0LtK1
(cf. Sec. 1-3). Thus, for any point A of the segment 4’4"
hz, y) =th (@, y) + (1 =1tk (@, y) =nhr({).

If the points 4° and A" belong to one half-plane,
then % (t) does not vanish on the interval [0, 1]. Conse-
quently, 2 (0) =R (", y”) and k(1) = & (z’, y') are of
the same sign. If 4’ and 4 " belong to different half-planes,
then % (f) vanishes on Lhe interval [0, 1] and, being
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a linear function, attains at the end-points values of
opposite signs, i.e. & (z”, y”) and & (z’, y’) have opposite
signs.

Hence, the expression

axr’ + by + ¢

is positive for the points A' belonging to one of the half-
planes defined by the straight line g, and is negative for
the points of the other.
| ¥ To find out geometrical
\ meaning of | az’ + by’ + ¢
let us determine the distance
of the point A’ from the
straight line g.

g e We drop from the point 4’
o a perpendicular on the line g

(Fig. 21). Let A, (xy, yo) be

70 the foot of the perpendicular.

The equation of the straight
| line 4’4, can be writlten in
0 \ > the form

be—2)—a@—y) =0

Indeed, the straight line
represented by this equation
passes through the point A’ and is perpendicular to g.
Hence

Fig. 21.

b@y—a)—al,—y)=0. (¥)
Since the point 4, lies on the line g we get,
azy + by, + ¢ = 0.
Whence
azr’ + by’ +c=a @ —z) + by —yo)- (»)
Squaring (*) and (*+) and adding them, we obtain
(az’ + by’ + ¢)* = (a® + b°) [(&"—x0)*+(¥" —¥,)°].
Hence
Ll by | =V @T R, ),
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where § (2, y’) is the distance of the point 4’ (z’, y’)
from the line g.
Thus, the magnitude

laz" + by" + c|
is proportional to the distance of the point (z', y') from
the siraight line
ar + by + ¢ = 0.

In particular, if a® 4+ b2 = 1, then this quantity is equal
to the distance of the point from the straight line. In
this case the straight line is said to be represented by an
equation in the normal form.

As is obvious, to reduce the equation of the straight

line
ax + by + ¢ =0

to the normal form it is sufficient to divide it by

+VarFe: or —Vatib?

As an example illustrating the application of the
normal form of the equation of a straight line let us
derive the formula for the area of a triangle given by the
coordinates of its' vertices.'! Let A (z;, y1), B (x5, Ys),
C (x5, y3) be the vertices of the triangle. Then its area
will be

1
S =7h | BC |,
where % is the altitude of the triangle dropped onto the
side BC,
| BC | = [(zy — 23)® + (y2 — ys)*1'2
We then find ~. The equation of the straight line BC is
(@ — x3) Y — Ya) — (U — Y2) (@2 — 23) = 0.
Indeed, it is linear and is satisfied by the poinls B
and C. We now reduce this equation to the normal form
by dividing it by [(y, — ys)® + (z, — z3)%1'7%. We get
(z—23) (Y2 —Y35)—(¥ —Ys) (32—‘53):0'
1/(xz—x3)2—|—(y2—y3)2
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Substituting the coordinates of the vertex A in the
left-hand member of this equation, we obtain (to within
a digit) the altitude of the triangle dropped from the
vertex A. Hence, the area of the triangle

S=%| (21— %) (Y5 — Y3) — (Y1 —Y2) (22— z3) |

EXERCISES

1. Given the equations of the sides of a triangle and
a point by its coordinates. How can we find out whether
this point lies inside the triangle or outside it?

2. Show that the distance between the parallel straight
lines

ax+by+ ¢ =0, ar + by + ¢, =10

is equal to
| eg—eg |
==
3. Form the equations of the straight lines parallel to
the line

ax + by + ¢ =0,

and found at a distance § from it.
4. Show that if two intersecting lines are represented
by the equations in the normal form

az + by + ¢ =0, ayz 4+ by+e, =0,

then the equations of the bisectors of Lhe angles formed
by them will be

(ax + by + ¢) &= (mzx + by + ¢;) = 0.

5. Show that the locus of points whose distances from
two given straight lines are in a given ratio consists of
two straight lines. Form the equations of these lines,
taking the equations of the given lines in the normal form
and putting the ratio of the distances to be equal to

A
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Sec. 2-6. Basic Problems on the Straight Line

Let us form the equalion of an arbitrary straight line
passing through the point A (zy, yq).
Suppose
ax + by + ¢ =0 (%)

is the equation of the required line. Since the line passes
through the point 4, we get

az, + by, + ¢ = 0.

Expressing ¢ and substituting it in the equation (x),
we obtain

a@—z)+ bWy —y) =0

It is obvious that, for any a and &, the straight line
given by this equation passes through the point A.

Let us form the equation of the straight line passing
through two given points Ay (zy, Y1), Ag (Zgy Ys)-

Since the straight line passes through the point 4,, its
equation may be written in the form

a(@—z)+ by —uy)=0.
Since the line passes through the point 4,, we have
a @y — ;) + by, —y) =0,
whence
& Yy—un
b T xy—axy ?
and the required equation will be
T—z Yy —y1
To— Yo—¥1
Let us now form the equation of a straight line parallel
to the line

ax + by + ¢ =0,

and passing through the point A (x1, ¥y)-
Whatever the value of A, the equation

ax 4- by + A =0
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vepresents a straight line parallel to the given one. Let
us choose A so that the equation is satisfied for z = z;
and y = yy:

a$1+by1+x=0.
Hence

= — az, — by,
and the required equation will be
al@—1z;)+b@y—y)=0.

Let us form the equation of a straight line passing through
the given point A (z,, y,) and perpendicular to the line

ar + by 4+ c¢c = 0.
For any A the straight line
br —ay +A =0

is perpendicular to the given line. Choosing A so that the
equation is satisfied for x = 2, y = y; we find the re-
quired equation

bx—z)—aly—y)=0.
Let us form the equation of a straight line passing through
the given point A (z,, y,) at an angle o to the x-axis.
The equation of the straight line can be written in the
form
y=kx + L
The coefficients £ and ! are found from the conditions
tana =k, y, = kay + L
The required equation is
Yy — Yy = (& — z,) tan a.
We conclude with the following assertion: the equation

of any straight line passing through the point of intersection
of two given straight lines

oz 4+ by + e =0, ax+ by + ¢y = 0,
can be written in the form
M@z + by + ) + B (@a2+boy+cg) = 0. (xx)
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Indeed, for any A and w which are not both zero, the
equalion (x+) represents a straight line which passes
through the point of intersection of the two given lines,
since its coordinates obviously satisfy the equation ().
Further, whatever lhe poinl (z;, y,) which is different
from the point of intersection of the given straight lines,
the line (++) passes through the point (z;, y;) when

A= aw@xy+ boyo+ oy —p = a2 + by + e
Consequently, the straight lines represented by (x+)

exhaust all the lines passing through the point of inter-
section of the given straight lines.

EXERCISES

1. Form the equation of a straight line parallel (per-
pendicular) to the straight line

ar + by + ¢ = 0,

passing through the point of intersection of the straight
lines

ar+ by +c6,=0, ayr+ by + ¢, =0.
2. Under what condition are the points (z;, y;), (%s, ¥2)
situated symmetrically about the straight line

ax + by + ¢ =0?

3. Form the equation of a straight line passing through
the point (z,, y,) and equidistant from the points (z;, y;)
and (Z5, Ys)-

4. Show that three points (zy, ¥4), (Zs, ¥2) and (23, ¥s)
lie on a straight line if and only if

z oy 1
xz Yo 1 =0.
z3 ys 1

Sec. 2-7. Transformation of Coordinates

Let there be introduced two coordinate systems (zry
and z'y’) in the plane (Fig. 22). We have to establish the
relation between the coordinates of an arbitrary point with
respect to tnese coordinate systems.

4—0406
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Let
nr + bly + 6 = 01

ayx + by + ¢, =0

be the equations of the axes y* and z’ in the normal form
in the coordinate system xy.

The equation of a straight line in the normal form is

defined uniquely to within a change of sign of all the

coefficients of the equation.

A Therefore, without limitation

of generality, we may assume

that for some point A4, (z,,

P Yo) situated in the first quad-

o0 rant of the coordinate sys-
tem z'y’

@z + hyo + ¢ >0,

ly

XI
/ asTo + bayo + 5 >0
ol = (otherwise {the signs of the
coefficients may be reversed).
Fig. 22. We assert that the coordi-

nates z',y’ of an arbitrary point
with reference to the coordinate system z'y’ are expressed
in terms of the coordinates x, y of the same point in the
coordinate system zy by the formulas

' =ax+ by +ey, } *)
y’ = azx ‘+‘ bzy +‘ Cz.

Let us, for instance, prove the first formula. The abso-
lute value of its left-hand side is equal to the absolute
value of its right-hand side, since it represents the distance
of the point from the y’-axis. In each of the half-planes
defined by the y’-axis both sides of the formula preserve
the sign and change it when passing from one half-plane
to the other. And since the signs coincide for the points 4,
they coincide for any point of the plane.

The second formula is proved in a similar way.

Since
ax + bly + G = 01

asx + byy + ¢y =0
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are the normal equations of two mutually perpendicular
straight lines, the coefficients a,, b,, a,, b,, of the for-
mulas («) are related by the formulas
ai4-bi=1,
ay+b;=1, (**)
aiaz+b1bz=0-

Taking into consideration the first two formulas of (xx),
we may represent the coefficients a;, by, a,, by in the
following way:

a, = cos a, b, = sin a,
a, = cos &y, by, = sin a.
Then from the third relation of (x) we get
cos o oS @; -+ sin a sin o; = cos (@ — a,) = 0,

whence it follows that a; = a —_l-g -4~ 2kw. Thus, the

formulas (x) for the transformation of coordinates can
be written in one of the following two forms:

2’ =zcosa+ysinatcy,
y' = —zsina+ycosa+tc, }
or
z'=zcosa+ysinatcy,
Yy =zsina—ycosa+c,. }

The first of them covers all the cases when the coordi-
nate system z'y’ can be obtained from the coordinate
system zy by motion. The second system of formulas
suits for the cases when the coordinate system z'y’ is
obtained from the system zy by means of motion and
mirror reflection.

The quantities @, ¢;, and ¢, in the formulas for trans-
forming ordinates have a simple geometrical meaning:
o is the angle formed by the z'-axis with the z-axis (to
within an even 2x), and ¢, and ¢, are the coordinates of
the origin of the coordinate system xy in the coordinate
system z'y’.

L*
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Formulas for the transformation of coordinates allow
another important interpretation if they are considered as
formulas for onto mapping of the plane in which a point
with the coordinates z', y’ is correlated with the point
with the coordinates ay in the same coordinate system.
This mapping differs in that it preserves distances.
Namely, the distance between any two points A and B
is equal to the distance between their images 4’ and B’.
Thus, this mapping is a motior, or a motion with mirror
reflection. The first system of formulas corresponds to
proper motion, whereas the second system of formulas
gives motion with mirror reflection.

EXERCISES

1. Derive the formulas for passing from the coordinate
system xy to the coordinate system 2'y’ if the coordinate
axes ' and y’' are given by the equations

ar +by+¢=0 —bxr+ay+c, =0
2

2. Derive the equation of the curve 2z® — y® = a?
taking the straight lines

z+y=0 z2—y=0

for the new eoordinate axes.

3. The new coordinate system z'y’ is obtained from the
old coordinate system xzy by rotating the latter about
some point (z4, y,). Using the formulas (#), for the trans—
formation of coordinates find x, and y,.

4. Putting z = z 4 iy, show that any motion in the
zy-plane is realized by a linear transformation of the
complex variable

2 = oz + ¢,

where » and ¢ are complex numbers, and | ® | = 1.

5. Find the equation of the curve described by the
point C of the mechanism shown in Fig. 23. ABC is a rigid
triangle, the point A slides along the z-axis, and the
point B moves along a circle of radius R with
centre at the origin.
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Solution. At the moment when the point B coincides
with B, the points 4, B, and C have the coordinates
d, 0), (R, 0), and (a, b), respectively. Let us put z, =

Fig. 23.

= ¢ -} ib. At an arbitrary moment the complex coordinate
of the point C

zZ = 0z, + C.

Since all the time the point B remains on the circle

Fig. 24.

z? + y? = R?, and the point A on the z-axis, we have
JoR +c|=R, Im(ad -+ ¢) =0.
Hence
o (R —2p) +2]=R, Im(o(@— z) -+ 2)=0,
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or
IR — 2P+ o (R —2) 2+ o (R—3z0) z+ | 2z [P= R?,
0d—2)—0(d—12)+z—2=0

(conjugate complex numbers are marked with dashes).

Solving these equations with respect to o and ®, and
noting that oo = 1, we find the equation satisfied by z.
Substituting then z 4 iy for z, we get the equation of the
required curve.

6. Find the equation of the curve described by the
point C of the mechanism shown in Fig. 24. The triangle
ABC is rigid, its vertices 4 and B move along circles.



Chapter 3

Conic Sections

Sec. 3-1. Polar Coordinates

In a plane (Fig. 25) we take an arbitrary point O and
draw a ray g. The direction of angular measurement about
the point O is also given. Then the position of any point 4
in the plane may be specified by two numbers p and 6 : (1)
p expresses the distance of the point A from O, and (2) 0
is the angle formed by the ray 04 with the ray g.

Fig. 25. Fig. 26.

The numbers p and 6 are called the polar coordinates
of the point 4. The point O is termed the pole, and the
ray g the polar axis.

Like in the case of the Cartesian coordinates, we may
speak of the equation of a curve in the polar coordinates.
Namely, the equation

¢ 8 =0

is called the equation of a curve in the polar coordinates if
it is satisfied by the polar coordinates of each point of the
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curve. And conversely, any pair of the numbers p, 0
satisfying this equation represents the polar coordinates
of one of the points on the curve.

By way of example let us form the equation (in polar
coordinates) of a circle passing through the pole with
centre on the polar axis and radius R. From a right-angled
triangle 044, we get OA = 04, cos 0 (Fig. 26). Whence
the equation of the circle is

p = 2R cos 0.

Let us now introduce on the plane p6 a system of Car-

tesian coordinates zy, taking the pole O for the origin of

the Cartesian coordinate sys-

\Y tem, the polar axis for the

positive semi-axis =z, and

choosing the direction of Lhe

positive semi-axis y so that it

forms an angle of + n/2 with

the polar axis as measured
P in the chosen direction.

The following simple rela-
tionship is obviously estab-
6 : lished between polar and
rectangular coordinates of
a point:

X

z=pcosB, y=opsinO (x)

Fig. 27. (Fig. 27). This makes it pos-
sible to get the equation of
a curve in Cartesian coordinates, given the equation of
this curve in polar coordinates, and vice versa.
Let us, for instance, form the equation of an arbitrary
straight line in the polar coordinates. The equation of
this line in the Cartesian coordinates is

ar +by+c=0, ¢<O.

Introducing p and 0 in this equation (instead of z
and y) according to the formulas (x), we get

p(acos® 4 bsinB) 4 c =0,
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Putting then

a

W:COS a,
b .
—— =8I &,

Va2+b2

[

vare
we obtain the equation of the straight line in the form
p cos (@ — 0) = p,.

EXERCISES

1. Show that the equation of any circle in polar coordi-
nates can be written in the form

p* + 2a pcos (@ + 6) + b =0.

Determine the coordinates of its centre o, 0,, and the
radivs R.

2. Express the distance between two points in terms of
the polar coordinates of these points.

3. What geometrical meaning have o and p, in the
equation of a straight line
in polar coordinates

p cos (@ —B) = p,?

4. Form the equation (in
polar coordinates) of the loc-
us of the feet of perpendicu-
lars dropped from the point
A on the circle onto ils
tangent lines (the cardioid,
see Fig. 28). Take the point
A for the pole, and the exten-
sion of the radius OA for the

polar axis.
5. Form the equation of
the lemniscate of Bernouwlli Fig. 28.

which is the name for the
locus of points the product of whose distances from two
given points F, and F, (the foci) is constant and is equal
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to | FiF, |2/4. Take the mid-point of the line segment
joining the foci for the pole, and the ray passing through
one of the foci for fthe polar axis.

Sec. 3-2. Conic Sections and Their Equations
in Polar Coordinates

A conic section (or a conic) is defined as a curve obtain-
able on the surface of a circular cone at the intersection
with an arbitrary plane that does not pass through the

Fig. 29. Fig. 30.

vertex of the cone (Fig. 29). Conics possess a number of re-
markable properties, one of them consisting in the fol-
lowing.

Each conic section, except for a circle, is a plane locus of
points the ratio of whose distances from a point F and a
straight line § is constant. The point F is called the focus
of a conic, the straight line 8§ being its directriz.

Let us prove this property. Let y be the curve along
which the plane o”intersects the cone (Fig. 30). We now in-
scribe in the cone a sphere which touches the plane o, and
denote by F the point of contact of the sphere with the



Ch. 8. Conic Sections 59

plane. Let ® denote the plane containing the circle along
which the sphere touches the cone. We then take an arbit-
rary point } on the curve y and draw through it an ele-
ment of the cone, denoting by B the point at which it
cuts the plane ©. We finally drop a perpendicular from
the point M onto the line § of intersection of the planes
o and o.

It is stated that the curve y possesses the above property
with respect to the point 7 and the straight line 6. Indeed,

é 'J
_ Ay A2
A A —*

Z
b2
B - - -
F
Fig. 31. Fig. 32.

FM = BM as tangent lines to the sphere drawn from one
point. Further, if we denote by A () the distance of the
point M from the plane ®, then AM = h (M)/sin a,
BM = h (M)/sin} B, where o is the angle between the
planes ® and o, and f is the angle between the generatrix
of the cone and the plane w.

Hence it follows that

AM _ AM _ sinf

FM ~ BM ~ sina’
i.e. the ratio AM/FM does not depend on the point M.
The statement has been proved.

Depending on the magnitude of the ratio A of the dis-
tances of an arbitrary point of aconic section from the focus
and directrix the curve is called the ellipse (A << 1), the
parabola (A = 1), or the hyperbola (A > 1), the number A
being termed the eccentricity of a conic seclion.

Let F be the focus of a conic section and 9§ its directrix
(Fig. 31). In the case of the ellipse and parabola (A < 1)
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all points of the curve are situated on one side of the
directrix, namely, on the side where the focus F is lo-
cated. Indeed, for any point 4 situated on the other side
of the directrix

AF AB __
AL AT

On the contrary, the hyperbola (A > 1) has points situ-
ated on both sides of the directrix. The hyperbola consists
of two branches separated by the directrix.

I \3/2\2 "/e /32

fi o)

\—

EEARN

Fig. 33.

Let us form the equation of a conic section in polar
coordinates taking the focus of the conic sectionfor the
pole of the coordinate system p@ and drawing the polar
axis so that it is perpendicular to the directrix and inter-
sects it (Fig. 32).

Suppose p is the distance of the focus from the direc-
trix. The distance of an arbitrary point 4 of the conic
section from the focus is equal to p, and the distance from
the directrix to p — p cos 8 or p cos 6 —p, depending on
how the points 4 and F are situated relative to the direc-
trix (on one or both of its sides). Hence the equation of
the conic section

Y _ %
p—pcos@ M ( >
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for the ellipse and parabola, and

P _ P
p—pcose—_i—)" *)

for the hyperbola (lhe upper sign corresponding to one
branch of the hyperbola, and the lower sign to the other).
Solving the equations (x), (++) with respect to p, we get

M
p= 1+Acos®

which is the equation of the ellipse and parabola, and

_ XM
p~1i}ucose

which is the equation of the hyperbola.
Figure 33 illustrates the change in the shape of a conic
section depending on the eccentricity A.

EXERCISES
1. Show that the curve

[
p_i—}-acos 0--bsin®?’

is a conic section. Under what condition is the curve an
ellipse, a hyperbola, a parabola?

2. Given the three points (p;, 0), (ps, /2), and (ps, ),
form the equation of an ellipse, knowing that one of its
foci is situated at the pole of the pB coordinate system.

3. Let A and B be the points at which a conic section
intersects a straight line passing through the focus F.
Prove that

1 1
ar B

does not depend on the straight line.

4. Show that the inversion of the parabola with respect
to the focus transforms it into a cardioid (see Exercise 4
of Sec. 3-1). '
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Sec. 3-3. The Equations of Conic Sections
in Rectangular Cartesian Coordinates
in Canonical Form

In Sec. 3-2 we obtained the equations of conic sections
in the polar coordinates pf. Let us now pass over to the
rectangular coordinate system xzy, taking the pole O for
the origin and the polar axis for the positive semi-axis z.

From the equations (+) and (x+) of Sec. 3-2 for any
conic section we have

o' = A2 (p — p cos O)2.

Whence, taking into account the formulas of Sec. 3-1,
which establish relation between the polar and Cartesian
coordinates of a point, we obtain

@+ y* =2 (p — 2)%
or
(1 — A% x? + 2pAx + y? — A%p%= 0. (%)
This equation becomes considerably simplified, if we
displace the origin along the z-axis in a required way.

Let us begin with the ellipse and hyperbola. In this case
the equation (x) may be written in the following way:

A2\ 2 2),2
A=) (2 +4557) +2 — g =0.

We now introduce the new coordinates z’, y’, using the
formulas

A’ﬁ 7 4
3?+1—__I;vz—=x » Y=Y,
which corresponds to the transfer of the origin into the

point
)

1—22°

Then the equation of a curve will take the form

(1—A)z'2 4 y'2— 17ip;2 =0,
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or, putting for brevity

}“21)2 s }’ZPZ _ 19
e e

b

we get the following equations:
for the ellipse

13’2 y,Z
=t —1=0,

for the hyperbola
12 2

Y _1=0.

a? b2

The parameters a and b are termed the semi-axes of an
ellipse (a hyperbola).

For the parabola (A = 1) the equation (x) will have the
form

2pz + y* — p? =0,
or
y—2p(—z+4)=0;
by introducing the new coordinates
a'=—a+4, Y=y
it is transformed to the form
y'? — 2px’ = 0.

The equations of the conic sections obtained in the
coordinates z’, y’ are called caronical.

EXERCISES

1. Show that the equation of a conic section with the
focus (x4, y,) and the directrix
ax+ by +c¢=0
has the form
@ — 2z + (y — yo)* — k* (az 4 Py + ¢)* = 0.
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For what values of %% is this conic section an ellipse,
a parabola, a hyperbola?

2. Let K be any conic section and # its focus. Show that
the distance of an arbitrary point 4 of the conic section
from the focus F is linearly expressed in terms of the
coordinates z, y of the point, i.e.

AF = oz + By + v,

where a, f, y are constants.

3. Show that any straight line intersects a conic sec-
tion at most at two points.

4. Show that the locus of points the sum of whose dis-
tances from two given points is constant is an ellipse
(see Exercise 4 of Sec. 1-4).

5. Show that the locus of points the difference of whose
distances from two given points is constant is a hyperbola
(see Exercise 5 of Sec. 1-4).

6. What is the locus of the centres of circles touching
the two given circles K; and K,? Consider various cases of
mutual positions of the circles K; and K,, and also the case
when one of the circles degenerates into a straight line.

Sec. 3-4. Studying the Shape of Conic Sections
The ellipse (Fig. 34):

z? y?
atE=1

Let us note here that the coordinate axes are the axes of
symmetry of the ellipse, and the origin is the .centre of
symmetry. Indeed, if the point (z,y) belongs to the ellipse,
then the points symmetrical to it about the coordinate
axes (—z, ¥), (z, —y) and about the origin (—z, —y)
also belong to the ellipse, since they satisfy its equation
together with the point (z, y). The points of intersection
of the ellipse with its axes of symmetry are called the
vertices of the ellipse.

The entire ellipse is contained inside a rectangle
|z | <a, |y | <b formed by the tangent lines to the
ellipse at its vertices (see Fig. 35)
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Indeed, if the point (z, y) is situated outside the rectan-
gle, then at least one of the inequalities |z | > a or

7,

Fig. 34, Fig. 35.
|y | > b is satisfied for it, but then
z2 y2
= tE>1
and the point cannot belong to the ellipse.
We can obviously obtain an ellipse from a circle by
uniformly contracting the

latter. Let us draw on the Ay
plane a circle

2 2
Lot 0O

We then imagine that the
zy-plane is uniformly con- 0
tracted with respect to the
z-axis so that the point
(z, y) is transferred to the

point (z, y), where z = z,
and y = gy. In doing so the
circle (+) is transformed into

a curve (Fig. 36). The coordinates of any of its points
satisfy the equation

(x.y)

Fig. 36,

z2 z,'z

wtE=1
Hence, this curve is an ellipse.
50406
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The hyperbola (Fig. 37):
2 2
S-ft

Just as in the case of the ellipse, we come to a conclusion
that the coordinate axes are the axes of symmetry of
the hyperbola, and the origin is the centre of symmetry.

y

-

Fig. 37. Fig. 38.

The hyperbola consists of two branches symmetrical
about the y-axis and situated outside the rectangle
|z | < afly|<<b and inside two angles formed by its
extended diagonals (Fig. 38).

Indeed, inside the rectangle | z | << a and, consequently,

z2 2

- w<b
i.e. there are no points of the hyperbola inside the rectan-
gle. Nor they exist within the hatched portion‘of the plane
(see Fig. 38), since for any point (z, y) situated in
this portion of the plane

whence
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and, consequently,
332 1 2
< 0<1.

It is worth mentioning the following property of the
hyperbola. If a point (z, y), while moving off along the
hyperbola, is at an infinite distance from the origin of the
coordinates (z* 4 y* — o0), then its distance from one of
the diagonals of the rectangle which are obviously speci-
fied by the equations

z vy _ z_Y
_a—+T—O’ a b =0,

decreases infinitely (tends to zero).
Indeed, the quantities

x y

@ b

z , 0y
a—y——b—‘ and

are proportional to the distances of the point (z, y) of the
hyperbola from the indicated lines (see Secc. 2-5). The
product of these quantities

z y & y
Ty

o v T
i our assertion that the distancefrom one of the diag-
onals tends to zero is false, then there exists such A >0
and arbitrarily distant points of the hyperbola for which

22 y?
o b

=1.

z y z y
ERR A ER SR 4B
And since
T Yyl v
T+t |5 -F =t
then for such points
x y 1 z ] 1
7+7Fﬁv 7“ﬂ<w-

Squaring these inequalities and adding them, we get
z? y2 1
@ T <7E,
but this contradicts 2% 4 y? - oo.
5*
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The assertion las been proved.
The straight lines

z y Ty
- t+t57=0 - —3=0

G"‘l@

are called the asymptotes of the hyperbhola.
The hyperbola

x? yZ

= =1
is said to be conjugate with respect to the considered
hyperbola

22 y2 —q

a? b2

It has the same asymptotes but is situated inside the sup-

|
. |

N

plementary vertical angles formed by the asymptotes
(Fig. 39).
The parabola (Fig. 40):

y2—2px =0

has the z-axis as the axis of symmetry, since along with
the point (z, y) a point (z, —y) which is symmetrical to it
about the z-axis also belongs to the curve. The point of
intersection of the parabola with its axis is called the
vertex of the parabola. Thus, in this case the vertex of the
parabola is the origin.
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EXERCISES

1. Show that any ellipse is the projection of a circle.
2. Show that the product of the distances of a point on
the hyperbola from its asymptotes is constant (i.e. it is
independent of the point).
Ay

oA~

o —S

Fig. 41. Fig. 42.

3. Show that the equation of any hyperbola with the
asymptotes

ax+ by +e¢ =0, ax+ byy+c;=0
can be written in the form
(@ + by + ¢1) (@s + bay + ;) = const.

4. Justify the following method of constructing an ellipse
(Fig. 41). The sides of CD and AC of a triangle are di-
vided into the same number of segments of equal length.
The points of division are then joined to 4 and B. The
points of intersection thus obtained lie onfthe ellipse with
the major axis 4B. The minor semi-axis is equal to half
the altitude of the rectangle.

5. Justify the method of constructing the parabola
illustrated in Fig. 42.
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Sec. 3-5. A Tangent Line (o a Conic Section

The tangent line to a curve at point A4 is defined as the
limiting position, if this exists, of the secant line AB when
the point B approaches A unboundedly (Fig. 43).

Suppose a curve is given by the equation y = f ().
Let us form the equation of a tangent line at point
A (g, yo)- Let B (zy + Az,
Yo + Ay) be a point of the
curve situated close to 4. The
equation of the secant is

Y=t =L (z—az,)
As B> A

A '

_A_Z'"'* (5’70)’

and we get the equation of the
tangent line

Yy—Yo=1 (x) (x—zg). (+)

Analogously, if a curve is specified by the equation
z = @ (y), then’the equation of the tangent line at point
(zgs Yo) will be

z— x5 =9 (o) (¥ — yo) ()

Let us form the equation of a tangent line to a conic sec-
tion.

The case of parabola. The equation of the parabola may
be written in the form

Fig. 43.

P
X == 2[) .

Then the equation of the tangent line in the form ()
will be

x—xoz%(y——yo)

or
Yyo — Yo + pzo — pr = 0.
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Since the point (zy, y,) lies on the parabola and, hence,
Y5 — 2pzy, = 0, the equation of the tangent line can be
represented in the following final form:

yyo — p (& + z4) = 0.

The case of ellipse (hyperbola). Let (z,, y,) be a point
on the ellipse, and y°<= 0. In the neighbourhood of this
point the ellipse can be specified by the equation

yzb‘l/l-:1 _%:"

where the square root should be taken with the same sign
as Yo The equation of the tangent line is found by the
formula (+):

N
Y—Yo= — (2 — %),
a? l/i—-ﬂ’-
a2
or
b2
Y—Yo= — yZaz (‘75—-7"0)-

Multiplying it by y,/b* and transposing all terms to
the left-hand side, we get

zx Y¥o L A
e — () =0,

or
T
a?

+ 23 —1=0,
2 2
since 2—3 —[—Z—;’= 1.
In the neighbourhood of any point (z,, y,) of the ellipse,
where z, %= 0 the ellipse can be specified by the equation

Sy
z=a}/ 1 -3
The square root is taken with the same sign as z,. Then,
reasoning in a similar way and using the formula (x+) we
arrive to the equation of the tangent line
2
a2

+l‘_yl.='1,

b2
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Since at each point of the ellipse xy, and y, cannot be
equal both to zero, then at any point (z,, y,) the equation
of the tangent line to the ellipse will be

-'m‘o + Yo Jyo =1.
The equation of the tangent line to the hyperbola
2y
= =1

is obtained analogously and has the form
TzH Y¥o _ 1.

a2 b®

Let us show that a tangent line to a conic section has only
one point in common with this section (i.e. the point of
tangency). Indeed, let us take, for example, an ellipse
whose equation is

22 y2
=1
The equation of the tangent line at point (zq, y,) will be
wxo Ty Yo Yo 1.

Let us now look for the points of intersection of theellipse
with ils tangent line. Eliminating z from the equa-
tions, we obtain for y

¥ .‘i( Yo __ 1) 1=0

b2 23\ b?

or
a? % a2 ¥ z}
y? b2z} ( T ) :02 bg + ( ag ) =0.

Smce the point (z,, y,) lies on the elhpse, we have z3/a® +
y3/b* =1, and the equation for y takes the form

2
oy (V2 — 2000+ ¥}) =

This equation has two merged roots y = y,. Analogous-
ly, eliminating y from the equations of the ellipse and its
tangent line we get x = z,. Thus, the ellipse has only one
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point in common with the tangent line, i.e. the point of
tangency (zq, Y,). For the hyperbola and parabola this
is proved in a similar way.

Based on the property of a tangent line to have only one
point in common with a conic section is a refined method
of deriving the equations of a pair of tangent lines pas-
sing through an arbitrary point. Let us take, for example,
an ellipse specified by the following equation

z2 2
= ‘Za =1.

We then form the equation of the tangent linesto the ellipse
passing through the point (z, y,) not lying on the
ellipse. Let (z, y) be an arbitrary point. The coordinates
of any point (2, y’) on the straight line g passing through
the points (z,, y,) and (z, y) can be represented in the form
r_ Zytix
W ’
Yo+ty
V="

We now look for the points of intersection of the line g
with the ellipse, for which purpose we substitute =’ and y’
in the equation of the ellipse. We get

BB o (B W)y (S ) =g,

or

(1) v (e gt
z2
+22 (7+—bz-—1)=o.

The point (z, y) will be on the tangent line to the ellipse
if the roots of the equation for ¢ are multiple, i.e. the
discriminant of the equation is equal to zero. Hence, to
get the equation of Lhe tangent lines it is necessary to
equate to zero the discriminant of the eguation for ¢:

(:Cﬁ gg—i)(:—:_}_;i:__l)_(a:;o +%—1)2=0‘
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The equations of tangent lines to a hyperbola and para-
bola have an analogous form. Let us note here that the
straight line

"30 4L ’/yo

passes through the points of tangency.

EXERCISES

1. Show that a tangent line to the hyperbola, together
with ils asymptotes, defines a triangle of a constant area.
2. Express the condition of tangency of the straight line

Yy —Yo=r(x— )
to the ellipse

2 y?
=1

Show that the locus of the vertices (z,, y,) of right
angles whose sides touch the ellipse is a circle.

3. Show that the vertices” of right angles whose sides
touch a parabolalie on the directrix, and the straight line
joining the points of tangency passes through the focus.

4. Derive the equation of a pair of tangent lines to a co-
nic section which are parallel to the straight line

az + By + vy = 0.

5. Show that the segment of a tangent line to the hyper-
bola contained between the asymptotes is hisected by the
point of tangency.

Sec. 3-6. The Focal Properties
of Conic Sections

By definition, a conic section has a focus and a dirvectrix.
We are going to show that the ellipse and hyperbola have
one more focus and one more directriz. Indeed, let the conic
section be an’ellipse. In the canonical arrangement its
directrix 8, is parallel to the y-axis and the focus F, lies
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on the z-axis (Fig. 44). The equation of the ellipse is
S

Since in such a position the ellipse is symametrical with

respect to the y-axis, it has a focus 7, and a directrix §,
which are respectively symmetrical to the focus ¥, and the

62 é 1

@
\

Fig. 4.

directrix 8, about the y-axis. Reasoning in an analogous
way, we prove that the hyperbola also has two foci and
two directrices.

Let us now show that the sum of the distances of an arbit-
rary point of the ellipse from its foci is constant, i.e. it is
independent of the point. Indeed, for an arbitrary point X
(Fig. 44) we have

XI,

— XFy
m=h =M

XX,

Hence
XF, + XF, = M\ (X,X,) = const.

Analogously, we can show that the difference of the dis-
tances of an’arbitrary point of the hyperbola from its foci
is constant (Fig. 45).

Let us find the foci of the ellipse and hyperbola in the
canonical case.

The equation of the ellipse is

z2 y2
=t
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Let ¢ be the distance from the centre of the ellipse to the
foci. The sum of the distances of the vertex (0, b) from
the foci is equal to 2)/ b2 + ¢ The sum of the distances
of the vertex (a, 0) from the foci is equal to 2a. Hence

1/ b2 fc2=a,
and, consequently,

c=V az—p2.
The equation of the hyperbola is

22 2

= =1

We then compare the difference between the distances of
the point on the hyperbola with the abscissa ¢ (where c is

62 y 51
X2 X]

RV ONRNaH
71 1IN

Fig. 45.

the distance from the centre of the hyperbola to the foci)
with the difference between the distances of the vertex
(a, 0) from the foci. This comparison yields the following
formula for the distance e

c—VETE.

Let us mention the following optical or reflection prop-
erty of the ellipse: Rays of light emanating from one focus
and being mirror reflected by the ellipse will come together
at the other focus. In other words, if A (zy, v,) is a point
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on the ellipse, then the segments 4 #; and AF, form equal
angles with the tangent line at the point A.

To prove this property it is sufficient to show that the
ratio of the distances of the focus from the tangent line
and from Lhe point of tangency A does not depend on what
focus is taken: I'| or F,.

The square of the distance of the focus #; (¢, 0) from
the point of tangency A (z,, y,) is

x%bz)_
a2 |

AF? = (zg— ¢)* 4 y2 = (zy—¢)2+ (bz—
=z ('1 —Z—:) —2cxy+ 02+ 2,

or, noting that a?= b2+ c2,

z2.02 cx 2
AF == —2cxo—}-a2=(—al—-a) )

The distance of the focus F; (¢, 0) from the tangent line
at the point A (zy, y,) is

hy=k|-SE —1],

where % is a normalizing
factor reducing the equation
of the tangent line to the
normal form.

Whence it follows that

L
AF, e
For the other focus ¥, (—¢, 0) Fig. 46.

the same relation is obvious-
ly obtained. The assertion is thus proved.

The hyperbola possesses a similar optical property:
Rays of light emanating from one focus seem to emanate
from the other focus on being mirror reflected by the hyper-
bola (Fig. 46).

The optical property of the parabola consists in that
rays of light emanating from its focus become parallel to its
azxis on being mirror reflected by the parabola.
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EXERCISES

{. Justify the following method of construction of the
foci of the ellipse. From the veriex on the semiminor axis
strike a circle of radius equal to the semimajor axis.
Then the points of intersection of this circle with the
major axis will be its foci.

2. Prove the optical property of the hyperbola.

3. Find the focus of the parabola in the canonical
disposition.

4. Find the directrices of the conic sections in the ca-
nonical arrangement.

9. Show that all conic sections k; given by the equa-
tions \

z? y
a2 b2 A =1,
(where A is the parameter of the family) are confocal,
i.e. they have common foci.

6. Show that through any point of the zy-plane not
belonging to the coordinate axes there pass two conic
sections of the family k) (Exercise 5): an ellipse and
a hyperbola.

7. Show that the ellipse and the hyperbola of the fami-
ly %k, (Exercise 5) passing through the point (z,, y,)
intersect at this point at right angles, i.e. the tangent
lines to them at the point (z,, y,) are mutually perpen-
dicular.

Sec. 3-7. The Diameters of a Conic Section

The diameter of an ellipse (a hyperbola) is defined as any
straight line passing through the cenire of the ellipse
(hyperbola). The diameter of a parabola is defined as any
straight line parallel to its axis, in particular the axis
itself.

An arbitrary straight line intersects a conic section at
most at two points. If there are two points of intersection,
then the line segment with the ends at the points of
intersection is termed the chord. A conic section has the
following property: The mid-points of a set of its parallel
chords lie on the diameter (Fig. 47).
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2

This property is obvious if the chords are perpendicular
to the axis of symmetry. In this case the mid-points of

the chords lie on this axis.

Consider the general case.
A family of parallel straight
lines not parallel to the co-
ordinate axes can be speci-
fied by the following equa-
tions

y=kx+ b, k=0,

where %k is the same for all
straight lines.

The equations of the ellipse
and hyperbela can be com-
bined in the [following way:

az® 4 py: — 1 = 0.
The end-points of the chords

satisfy the system of equa-
tions

ax? + pfy* — 1 =0,
y =kx+ b

Substituting kz + & for y
in the first equation, we
find the equation which is
satisfied by the abscissas

z, and =z, of the end-points

©

(a)

i

(6)

AN

(c)
Fig. 47.

of the chord:

( + BK?) 2® + 2Pkbz + pB® — 1 = O.

By the property of the roots of a quadratic equation

2Bkb

ik = T e

Thus, the abscissa of the mid-point of the chord

z3+Z,

Prb

L= 5

= T afpAEe
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The ordinate y, is found by substituting z, in the equa-
tion of the chord y = kx -+ b:

o B ab
Ye=—"2TpE T2 = atpe-

Whence

o
Ye= _ch-

Thus, the mid-points of the parallel chords y = kz + b
lie on the straight line passing through the origin, i.e.
through the centre of the ellipse (hyperbola). Its slope

B = %

Br -
The diameter
y==kz
is called conjugate with respect to the diameter
y = kz,

parallel to the chords.
Obviously, conjugacy of the diameters is a mutual
property, since the slope of the diameter conjugate to

y=kFkz

¢
—_ W =k.
Let us consider the case of parabola. The coordinates of
the end-points of the chords satisfy the system
y2—2px =0, y=kx-+ b

Eliminating z, we find the equation for the ordinates of
the end-points:

2py 2pb
PoF 5 =0
Hence, like the previous case

2
Y1+y2 =Tp-
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Thus,

Yo=—g—=7= const.

The mid-points of the chiords lie on a straight line parallel
to the z-axis (the axis of the parabola).

Let us mention one more property of the conjugate
diameters: If a diameter intersects a conic section, then the
tangent lines at the points of intersection are parallel to
the conjugate diameter.

Indeed, let (z,, y,) be the point of intersection of the
diameter y = kx with the ellipse (hyperbola) aa® + By? =
= 1. The equation of the tangent line at the point
(To, Yo) is axzy + Pyy, — 1 = 0. Its slope &' =—azy/Py,.
Since the point (z,, y,) lies on the diameter y = ke,
we have y, = kz,. Therefore

e
K= —g,

which was required to be proved.

EXERCISES

i. The tangent lines to the ellipse
x2 y2
o T =1

have the slope k. Determine the points of tangency.
2. The chord of the ellipse

z2 y2
@ =1

is bisected at the point (z,, y,). Find the slope of the
chord.
3. Show that the ellipse allows a parametric represen-
tation:
z=acost, y=>bsinl.

What condition is satisfied by the values of the para-
meter ¢t corresponding to the end-points of the conjugate
diameters? Prove that the sum of the squares of thelengths
of the conjugate diameters of the ellipse is constant (Apol-

6—-0406
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lonius’ theorem). Formulate and prove a similar theorem
for the hyperbola.

4. Any ellipse can be represented as the irojection
of a circle. Show that in this projecting to the conjugate
diameters,of the ellipse there correspond the mutually
perpendicular diameters of the circle. Relying on this
fact, prove that the area of the parallelogram formed by
the tangent lines at the end-points of the conjugate dia-
meters is constant.

5. Show that the area of any parallelogram with the
vertices at the end-points of the conjugate diameters of
the ellipse

x2 yz
= Tw=1

has one and the same value equal to 2ab.

6. It is known that of all the quadrilaterals inscribed in
a circle the square has the greatest area. Show that among
all the quadrilaterals inscribed in the ellipse the paralle-
lograms with the vertices at the end-points of the conju-
gate, diameters have the greatest area.

7. Show that the area of the ellipse with the semi-axes
a and b is equal to mab.

8. Is it possible to inscribe a triangle in an ellipse so
that the tangent line at each of its vertices is parallel to
the opposite side? With what arbitrariness can it be done?
What is the area of this triangle if the semi-axes of the
ellipse are a and b.

Sec. 3-8. Second-Order Curves
(Quadric Curves)

A curve of the second order is defined as the locus of
points in the plane whose coordinates satisfy an equation
of the form

a7 + 20,52y + ag0y* + 20,7 + 2ay +a =0, (3)

in which at least one of the coefficients ay, a;5, @,y
is non-zero.

Obviously, this definition is invariant relativegto the
choice of the coordinate system, since the coordinates of a
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point in any other coordinate system are expressed linearly
in terms of its coordinates in the zy-system and, conse-
quently, the equation in any other coordinate system
will have the form ().

Let us find out the geometrical meaning ot second-order
curves. We put the curve in the new coordinate system
z'y" which is related to the zy-system by the formulas

z =41’ cosa -+ ¥y sin a,
y = —z' sina + y' cos a.

The equation of the curve, preserving the form (&),
will have in the z'y’-system the coefficient

2a; = 2a,y, cos a sin @ — 2a,, Sin @ cos & +
+ 2a,5 (cos® & — sin®* a) =
= (a3, — @y,) sin 2a + 2a,, cos 2a.

Obviously, it is always possible to choose the angle a
so that this coefficient is equal to zero. Therefore, without
limiting the generality, we may regard that in the initial
equation (x) a;, = 0.

Further on we shall distinguish two cases:

Case A: both coefficients a;; and a,, are non-zero.

Case B: one of the coefficientls a;; or a,, is equal to
zero. Without limiting the generality, we shall consider
a]_l = 0.

In case A, by passing over to the new coordinate sys-
tem z'y’,

o=z Y =yt
a1y’ age "’
we bring the equation (x) to the form
anz’® + agy? + ¢ =0 (%)

and consider the following subcases:

Ay ¢540, ay; and ay, are of the same sign which is
opposite to the sign of c. The curve is obviously an ellipse.

A, ¢ =0, ay; and a,, have different signs. The curve
is a hyperbola.

Aj: ¢ 0, ayy, ayy, and ¢ have the same sign. None
of the real points satisfies the equation. The curve is
called imaginary.

o
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A, ¢ =0, ay; and ay, have different signs. The curve
decomposes inlo two straight lines, since the equation
(#+) can be written in the form

o -1/ — 4 ) (4 l/'_“ﬁ' =
(.z: ]/ auy)(z—i— any) 0.

A ¢ = 0, ay; and a,, have the same sign. The equa-
tion can be written in the form

o (2T l/-azz Yy —
(x ll/-(lll )(x +_L ally ) 0.
The curve decomposes into a pair of imaginary straight
lines intersecting at a real point (0, 0).

Let us now consider Case B.

In this case by passing over to the new coordinate
system z'y’:
r' =z, y’=y+ﬂ"1

Qa2
the equation is reduced to the form
20,2 + a50y"* + ¢ = 0. (w#%)

We then distinguish the following subcases:
B,: a, 5= 0. The curve is a parabola, since by passing
over to the new coordinates

" ’ c "
x=x+2a11 y=y1

the equatoin () is reduced to the form
2a,2" + aqy™ =

B,: a; = 0, a,, and ¢ have different signs. The curve
decomposes into a pair of parallel straight lines

y=+ ]/——-O

B, a; = 0, a,, and c¢ are of the same sign. The curve
decomposes into a pair of imaginary non-intersecting
straight lines

Ta3
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B, a; =0, ¢ = 0. The curve is a pair of coinciding
straight lines.

Thus, a real curve of the second order represents either
a conic section (the ellipse, hyperbola, parabola), or a pair
of straight lines (which may even coincide).

EXERCISES

1. Show that the second-order curve
(ax + by + ¢)® — (a1 + by + ¢)? =10

decomposes into a pair of straight lines, may be coincid-
ing ones.

2. As is known, all points of the ellipse are situated
within a bounded portion of the zy-plane. Proceeding
from this fact, show that the second-order curve (az +
+ by + ¢)* + (ax + Py + y)2 =k is an ellipse if the
expressions axr + by and oz + Py are independent and
E>0.

3. Show that the second-order curve

(@az+ by +c)yl@az+ Py +v)=k+*0

is a hyperbola, provided the expressions az + by, ar 4+
+ Py are independent.
4. Show that the second-order curve

(az + by + ¢)* — (@z + Py + 7)* = k+~0,

is a hyperbola if ax + by, az + Py are independent.

5. Show that if a straight line intersects a second-
order curve at three points, then the curve decomposes
into a pair of straight lines may be coinciding ones.

6. Show that if two indecomposable curves of the
second order have five points in common, then they
coincide.

7. A curve is termed a third-order curve if it is speci-
fied by the equation @4 (z, y) = 0, where @g4 (z, y) is
a polynomial of the third degree with respect to = and y.
Show that if a third-order curve y; has seven points in
common® with an indecomposable second-order y,, then
it decomposes into the curve y, and a straight line.



86 Aralytical Geometry

8. Let y be a second-order curve, Ay, ..., 4¢ the
vertices of a hexagon inscribed in it, o;; (z, y) = O the
equations of the sides joining A4; and A; (Fig. 48). Show
that the third-order curve a,,0,6035 — Ay @a600,5 = 0

Ay

Fig. 48.

intersects the curve y at six points 4;. Show that by
a suitable choice of the parameter A we can obtain a third-
order curve which decomposes into the curve y and a
straight line.

9. Prove Pascal’s theorem: The three points of inter-
section of the pairs of straight lines a;; and @y, ag,
and dye, Qg and ag; lie on one line (Fig. 48).



Chapter 4

Vectors

Sec. 4-1.” Addition and Subtraction of Vectors

In ge~omet‘ry,' a vector is understood as a directed line
segment (Fig. 49). The direction of a vector is indicated
by the arrow. A vector with initial point A and ferminal

point B is denoted as AB. A vector can also be denoted
/ B
A E
Fig. 49. Fig. 50.

by a single letter. In printing thisletter is given in bold-
face type (@), in writing it is given with a bar (a).

Two vectors are considered to be equal if one of them
can be obtained from the other by translation (Fig. 50).
Obviously, if the vector @ is equal to b, then b is equal
to a. If @ is equal to b, and b is equal to ¢, then a is equal
to c.

The vectors are said to be in the same direction (in oppo-
site directions) if they are parallel, and the terminal points
of two vectors equal to them and reduced to acommon
origin are found on one side of the origin (on different
sides of the origin).

The length of the line segment depicting a vector is
called the absolute value of the vector.

A vector of zero length (i.e. whose initial point coincides
with the terminus) is termed the zero vector.
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Vectors may be added or subtracted geometrically,
i.e. we may speak of addition and subtraction of vectors.
Namely, the sum of two vectors @ and b is a third vector
a + b which is obtained from the vectors @ and & (or
vectors equal to them) in the way shown in Fig. 51.

Fig. 51. Fig. 52.

Vector addition is commutative, i.e. for any vectors
a and b (Fig. 52).

a+b=b1la

Vector addition is associative, i.e. if a, b, ¢ are any
vectors then

@+b+c=a-+ b+ c).

This property of addition, as also the preceding one,
follows directly from the definition of the operation of
addition (Fig. 53).

Let us mention here that if the vectors @ and & are paral-
lel, then the vector @ + & (if it is not equal to zero)
is parallel to the vectors @ and &, and is in the same direc-
tion with the greater (by absolute value) vector. The
absolute value of the vector @ + b is equal to the sum
of the absolute values of the vectors a and b if they are
in the same direction, and to the difference of the absolute
values if the vectors @ and & are in opposite directions.

Subtraction of vectors is defined as the inverse opera-
tion of addition. Namely, the difference of the vectors
a and b is defined as the vector @ — & which, together
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with the vector b, yields the vector ¢. Geometrically it is
obtained from the vectors @ and b (or vectors equal to
them) as is shown in Fig. 54.

For any vectors a and b we have the following inequality

la+b| < lal+ 0]

(the triangle inequality), geometrically expressing the fact
that in a triangle the sum of its two sides is greater than

Fig. 53. Fig. 54.

the third side if the vectors are not parallel. This in-
equality is obviously valid for any number of vectors:

la+b+ ...+l I al+ 101+ .+ 1]

EXERCISES

1. Show that the sum of » vectors reduced to a com-
mon origin at the centre of a regular n-gon and with
the terminal points at its vertices is equal to zero.

2. Three vectors have a common origin O and their
terminal points are at the vertices of the triangle ABC.
Show that

— —> —>
OA 4+ OB + 0C =10

if and only if O is the point of intersection of the medians
of the triangle.
3. Prove the identity

2laP+ 210 P=]la+ b+ la—0b["
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To what geometrical fact does it correspond if @ and b
are non-zero and non-parallel vectors?

4, Show that the sign of equality in the triangle in-
equality takes place only when both vectors are in the
same direction, or at least one of the vectors is equal to
Zero.

5, If the sum of the vectors »,, ..., 7, reduced to
a common origin O is equal to zero and these vectors are
not coplanar, then whatever is the plane @ passing through
the point O there can be found vectors r; situated on
both sides of the plane. Show this.

6. The vector r,, lies in the zy-plane; its initial
point is (z,, y,) and the terminus is the point (m§, rd),
where m and n are whole numbers not exceeding M and N
by absolute value, respectively. Find the sum of all the
vectors r,, expressing it in terms of the vector with
the initial point at (0, 0) and the terminus at the point
(Zos Yo)-

7. A finite figure F in the zy-plane has the origin as the
centre of symmetry. Show that the sum of the vectors with
a common origin and termini at the points whose coor-
dinates are whole numbersof the figure F is equal to zero
if and only if the origin of coordinates serves as their
common initial point. (It is assumed that the figure F has
at least one point whose coordinates are whole numbers.)

8. Express the vectors represented by the diagonals of
a parallelepiped in terms of the vectors represented by
its edges.

Sec. 4-2. Multiplication of a Vector
by a Number

Vectors may also be multiplied by a number. The
product of the vector @ by the number A is defined as the
vector @b = Aa the absolute value of which is obtained
by multiplying the absolute value of the vector a by
the absolute value of the number A, i.e. |[Az | = |A | |a ]|,
the direction coinciding with the direction of the vector
a or being in the opposite sense depending on whether
A>00rA<<0.If A =0 ora = 0, then Aa is considered
to be equal to the zero vector.



Ch. 4. Vectors 91

The multiplication of a vector by a number possesses the
associative property and two distributive properties. Namely,
for any number A, w and vectors a, b

A(pa)= (M) a (associative property)
A a=>:ia a, .
gv(_ctj-)b)=la_—l‘_—;b } (distributive properties)

Let us prove these properties.

The absolute values of the vectors A (pa) and (Ap) @
are the same and are equal to |A | | p | | @ |. The direc-
tions of these vectors either coincide, if A and p are of the
same sign, or are opposite if A and p have different signs.
Hence, the vectors A (pa) and (Ap) @ are equal by absolute
value and are in the same direction, consequently, they
are equal. If at least one of the numbers A, p or the vector
a is equal to zero, then both vectors are equal to zero
and, hence, they are equal to each other. The associative
property is thus proved.

We are now going to prove the first distributive prop-
erty:

A+ p)a = ra + pa.

The equality is obvious if at least one of the numbers 2,
p or the vector a is equal to zero. Therefore, we may con-
sider that A, p, and @ are non-zero.

If A and p are of the same sign, then the vectors Aa
and pe are in the same direction. Therefore, the absolute
value of the vector Aa + pa isequal to| Aa |+ |pa | =
=|Allal+|wllal=((A+Ipl)lal The ab-
solute value of the vector (A + p)a is equal to|A +
+pllal=(A]1+Ipllal. Thus, the "absolute
values of the vectors (A + p) @ and Aa 4 pa are equal
and they are in the same direction. Namely, for A >
> 0, p >0 their directions coincide with the direction
of @, and if A << 0, p << O they are opposite to a. The
case when A and p have different signs is considered in
a similar way.

Let us prove the second distributive property:

M@+ b) =Aa + Ab.
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The property is obvious if one of the vectors or the
number A is equal to zero. If the vectors @ and b are paral-
lel, then & can be represent-
ed in the form & = pa.
And the second distributive
property follows ‘from the
first one. Indeed,

A4 pja=
=X (a + pa) = ra 4+ Apa.
Hence,
A (@ + b) = Aa + Ab.
Fig. 55. Let a and b be non-paral-

lel vectors, then for A >0
—_—
the vector AB (Fig. 55) represents, on the one hand,

Aa -+ Ab, and AAC equal to A (@ + b) on the other. If
A < 0, then both vectors reverse their directions.

EXERCISES
1. The vectors ry, r,, . .. are called linearly indepen-
dent if there exist no numbers A,, A,, . . ., (at least one of
which is non-zero) such that
7\.1r1+7\.2r2—|— o . =0

Show that two vectors are linearly independent if and
only if they are non-zero and non-parallel.

Show that three vectors are linearly independent when
and only when they are non-zero and there is no plane
parallel to them.

2. Show that any three vectors lying in one plane are
always linearly dependent.

3. Show that if two vectors #, and r, in a plane are
linearly independent, then any vector r in this plane
is expressed linearly in terms of r, and r,

r = Ay + Agr,.

The numbers A, and A, are defined uniquely.
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4., Show that if three vectors ry, ry, ry are linearly
independent, then any vector r is uniquely expressed in
terms of these vectors in the form

r = 7\41"1 + 7\:27'2 + A«a"g.

Sec. 4-3. Scalar Product of Vectors

The angle between the vectors a and b is defined as the
angle between the vectors equal to @ and b, respectively,
reduced to a common origin (Fig. 56).

b
Fig. 56. Fig. 57.

The scalar product of a vector a by a vector b is defined
as the number ab which is equal to the product of the
absolute value of the vectors by the cosine of the angle
between them:.

The scalar product possesses the following obvious proper-
ties which follow directly from its definition:

(1) ab = ba;

@) a* =aa = |a [}

(3) (\a) b = ) (ab);

() if le| =1, then (he) (ne) = hp;

(5) the scalar product of vectors a and b is equal to zero
if and only if the vectors are mutually perpendicular or one
of them is equal to zero.

The projection of a vector @ on a straight line is defined
as the vector @ whose initial point is the projection of the
initial point of the vector @ and whose terminal point is the
projection of the terminal point of the vector a. Obviously,
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equal vectors have equal projections, the projection of the
sum of vectors is equal to the sum of the projections (Fig. 57).

The scalar product of a vector @ by a vector b is equal
to the scalar product of the projection of the vector a
onto the straight line containing the vector & by the vec-
tor b. The proof is obvious. It is sufficient to note that
ab and ab are equal by absolute value and have the same
sign.

gThe scalar product possesses the distributive property.
Namely for any three vectors a, b, ¢

(@ 4+ b) ¢ = ac + be.

The statement is obvious if one of the vectors is equal
to zero. Let all the vectors be non-zero. Denoting by

a, b, at b the projections of the vectors @, &, and
a + b onto the line containing the vector ¢, we have

@+ b c=(a+ b)ec=(a+ bd)c,
ac + be = ac + be.

Let e be aunit vector parallel to ¢. Then @, b, and ¢

allow the representations ¢ = Ae, b = pe, ¢ = ve. We
obtain

@+ b)ec = (he + pe) ve = (A + p) v,
“ac + be = Aeve + peve = Av + pv.
Whence
(@+ b)c =ac+ be
and, hence,
(@ + b) ¢ = ac + be.

In conclusion we are going to show that if a, b, ¢
are non-zero vectorswhich are not parallel to one plane,
then from the three equalities

ra=0, rb =0, r¢e =0

it follows that r = 0.
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Indeed, if r = 0, then from the above three equalities
it follows that the vectors a, b, ¢ are perpendicular to r,
and therefore parallel to the plane perpendicular to r
which is impossible.

EXERCISES
1. Let A,, 4,, ..., 4, be the vertices of a regular

— —_ ~—>
n-gon. Then 4,4, + A,A; + ...+ A4, = 0. Derive
from this that

2n—2)m

1+coszTﬂ+cos4—:—+..,+cos( — =0,

sinzTﬂ—l—sinl*Tn—{-...—i-sin_@n—_;E)i:O_

2. Show that if @ and b are non-zero and non-parallel
vectors, then A%a® + 2pA (ab) 4+ p2b® > 0, the equality
to zero taking place only if A = 0, and p = 0.

3. Show that for any three vectorsr,, r,, rg parallel to
one and the same plane

TPy PPy PP
Py Pa¥y Pyrg|=0. (¥)
Ty PPy 3l

4. Show that three vectorsr,, r,, rgare linearly depen-

dent if and only if the condition (x) is fulfilled for them.
5. Show that for any four vectors ry, ry, rj, r,

™y T, Ty T,
Ty PTy TV T, -0
iy T3y Py PPy .
PPy Ty PPy TP,
6. Let [, l,, I3, and I, be four rays emanating from

one point, and a;; the angle between the rays /; and ;.
Show that in this case we have the identity

1 COSQy, COSOy3 COS Oy,
COS Qly; 1 COS Qlyg COS Olyy
COS Oy COSCgy 1 COS Ol
COSQyy COS Qs COS Qg 1

=0.
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See. 4-4. The Vector Product of Vectors

The vector product of a vector @ by a vector b is a third
vector @ X b defined in the following way. If at least
one of the vectors a, b is equal to zero or the vectors are
parallel, then @ X & = 0. In other cases this vector (by
its absolute value) is equal to the area of the parallelo-
gram constructed on the vectors @ and b as sides and is

axb

Fig. 58. Fig. 59.

directed perpendicular to the plane containing this paral-
lelogram so that the rotation in the direction from a to b
and the direction of @ X b form a “right-hand screw”
(Fig. 58).

From the definition of the vector product it directly fol-
lows:

1) a Xb=—b X a

@) laxb|=1|a]|l|b|sin0, where 0 is the angle
formed by the:vectors a and b;

3) (@) X b = A (a X b).

The projection of a vector a on a plane is defined as the
vector @’ whose initial point is the projection of the initial
point of the vector @ and whose terminal point is the pro-
jection of the terminal point of the vector a. Obviously,
equal vectors have equal projections and the projection
of the sum of vectors is equal to the sum of the projec-
tions (Fig. 59).

Suppose we have two vectors @ and b. Let a’ denote
the projection of the vector @ on the plane perpendicular
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to the vector b (Fig. 60). Then
axXb=a Xb

The proof is obvious. It is sufficient to mention that
the vectors @ X b and @’ X b have equal absolute values
and are in the same direction.

The vector product possesses a distributive property, i.e.
for any three veclors a, b, ¢

(@+b Xe=a xXe-+bxe. ()

The assertion is obvious ife = 0. It is then obvious that
the equality (+) is sufficient to be proved for the case

Fig. 60. Fig. 61.
le| =1, since in the general case it will then follow the
above mentioned property (3).

So, let |¢ | =1, and let @’ and &' denote the projec-
tions of the vectors @ and & on the plane perpendicular
to the vector ¢ (Fig. 61). Thenthe vectors ¢’ X ¢, b’ X ¢
and (@” -}- b’) X ¢ are obtained from the vectors a’, b’,

and @’ 4 &', respectively, by a rotation through an angle
of 90°. Consequently,

(@ + b)) xec
And since

I

a xXec+ b Xe.

a Xec=aXxXe b Xec=bXe,
(@ +b)Xe= @+ b Xe,
we get
(@+b) Xe=axc+b Xe,
which was required to be proved.
7-0406
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Let us mention the following simple identity which
is true for any vectors ¢ and b:

(@ X b)? = *b® — (ab)®.

Indeed, if 6 is the angle between the vectors @ and b,
then this idenlity expresses that

(Jallb|sin0?=j|aP®—(lallb]cosb)

and, consequently, is obvious.

EXERCISES

1. If the vectors @ and b are perpendicular to tlie vector
¢, then ’
([ax b) X ¢ =0.
Show this.
2. If the vector b is perpendicular to ¢, and the vector @
is parallel to the vector ¢, then

(@ X b) X ¢ = b (ac).
Show this.
3. For an arbitrary vector @ and a vector b perpendic-
ular to ¢
(@ X b) X ¢ = b (ac).
Show this.
4. Show that for any three vectors e, b, ¢

(@ X b) X ¢ = b (ac) — a (be).

5. Find the area of the hase of a triangular pyramid
whose lateral edges are equal to I, the vertex angles
being equal to a«, B, .

Sec. 4-5. The Triple Product of Veetors

The triple (scalar) product of vectors a, b, ¢ is the
num ber
(abc) = (a X b)c. (%)
Obviously, the triple product is equal to zero if and only
if one o] the vectors is equal to zero or all three vectors are
parallel {0 one plane.
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The numerical value of the triple product of non-zero
vectors a, b, ¢ which are nol parallel to one plane is
equal to the volume of the parallelepiped of which the
vectors a, b, ¢ are coterminal sides (Fig. 62).

Indeed, ¢ X b = S e, where S is the area of the basc
of the parallelepiped constructed on the vectors a, &,
and e is the unil vector perpendicular Lo the base. Further,
ec is equal up to a sign to the altitude of the parallelepided
dropped onto the mentlioned
base. Consequently, up to
a sign, (abe) is equal to the
volume of the parallelepiped
constructed on the vectors
a, b, and c.

The triple product possesses
the following property

(abc) =a (b X ¢). (x+)

It is sufficient to note ihat Fig. 62.

the right-hand and the left-

hand members are equal by absolute value and have the
same sign. From the definition (+) of the triple product
and the property (++) il follows that an interchange of any
two factors reverses the sign of Lhe triple product. In part-
icular, the triple product is equal to zero if two factors are
equal to each other.

EXERCISES
1. Noting that
(@ X ) Xe)d = (a X b) (¢ X d),
derive the identity
ac ad
br bd
2. With the aid of the identity
(@ X b) (¢ X b) = (ac) b* — (ab) (bc)
derive the formula of spherical trigonometry
sin a sin y cos B = cos § — cos y cos a,

.

(@ X b)(exa)=

%
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where a, f3, y are the sides of a tiriangle on the unit
sphere, and B is the angle of this triangle opposite to the
side f.

3. Derive the identity

(@ X b) X (¢ X d) = b (acd) — a (bed).
4. Show that for any four vectors «, b, ¢, d
b (acd) — a (bed) + d (cab) — ¢ (dab) = 0.

5. Let e, €,, €; be any three vectors satisfying the
condition

(eq€5€3) 5= 0.
Then any vector r allows the representation

)= (reses) ¢y | (reger) €y | (re1€5) €5
(erezeg) ' (egeqe) (e1ez€4)

Show this.
6. Show that the solution of the following system of
vector equations

(rab) =" (rbe) = a, (I‘C(l) = [31
where @, b, ¢ are the given vectors satisfying the con-
dition
(abe) # 0,

and r is the required vector, can be written in the form

1
r=arey (aa+-0B+ ev).
7. Show that if e,, e,, e; and r are any four vectors
satisfying the only condition (e;e,e;) 5= 0, then the fol-
lowing identity takes place

_ lexXey)(reg) | (egX eg) (rey) | (e3X ey)(res)
(ere4ey) (e1049€5) (e105¢3)
8. Show that the solution of the system of vector equa-
tions

r

ax =a, bx =0, cx =y,
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where a, b, ¢ are thegiven vectors and 2 is the required
vector satisfying the condition (abe) = 0, can be written
in the form
(X 0)y4(OXe)od(e X a)p
X =
(rehe) :

Sec. 4-6. The Coordinates of a Vector Relative
to a Given Basis

Let ey, e,, €3 be any non-zero vectors not parallel 1o one
plane. Then any vector allows a unique representation of
the form

r = 7\:161 + 7\.262 + A383. (*)

The numbers A,, A,, A; are called the coordinates of
the vector 1° velative Lo the basis eq, ey, 3.

Let us first prove tlial the representation (x) is unique.
Suppose there exists another representation:

r=he, + Me, + Aes.
Then
(A —A) ey + (Mg — Ay) €3 + (A — M) e3 = 0.

Multiplying this equality scalarly by the vector e, X e,
we get

(M — M) (ere5€5) = 0.

Since (ejeq,e;) %= 0, then A, — A} = 0. Analogously, we
conclude that A, — A, = 0, A3 — A, = 0. The uniqueness
of the representation (x) is proved.

Lel us now prove the possibility of the representation
(#). Suppose the veclor » is parallel to any of the veclors
ey, €y, €y, say e¢,. Then

= a

| eyl

where the plus sign is taken if the vectors r and e, are in

the same direction, the minus sign being taken if they
are in opposite direections.

Let now the vector r, together with the veclors e,

and e, be parallel Lo one plane, but is nol parallel eilher

6‘=7»ei,



102 Analytical Geometry

to the vector e¢,, or to the vector e,, We draw through
the end-poinls of the veclor r straighl lines parallel to
the vectors e; and e, (Fig. 63). Then

r=ry4r,.
Pul we have proved that
ry = Mey, ry = Age,.
Hence,
1'=7»161 + 7\262-

Let, finally, the vector r, together with no pair of vec-
tors e;, €, €,, ey eg e; be not parallel 1o one plane.

<

Fig. 63. Fig. 64,

We draw through the end-points of the vector 7 planes
parallel to the mentioned pairs of vectors (Fig. 64). Then

r=ry+4ry,+r;
and since we proved that
ry = Mey, Iy = A€, rz=Asey
we have
P = Me; + Are, + Ages.

Thus, the possibility of rcpresentation of the vector r
in the form (x) is proved in all the cases.
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The coordinates of a vector have a simple meaning
if the basis consisls of three pairwise orthogonal unit
veclors.

Indeed, multiplying the equality r = Ajeq + Age, +
+ Azey in turn by ey, e,, ¢; and noting thal ef = ¢} =
=e¢; =1, and ee, = e,e5 = €46, = 0, we get

}vl = rel-, ;\'2 = 7‘62, A«3 == 1‘93.

Let » be a vector with the coordinates A;, Ay, Aj,
and ' a vector with the coordinates Aj, A, A, We then
find the coordinates of Lhe vector r 4 r'. We have

r = Me; + Ay, + Agey,
r, = 7\1161 —I" A;eg —I" 7»;(63.

Whence r +r" = (A = A)) e; + (A, = A;) €, +
+ (Ay &= A;) ey. Hence, Ay &= Ay, Ay == Ay, Ag 4= A; arve
the coordinates of the vector r = r'.

We show in a similar way that the vector Ar has the
coordinates My, Ahy, ALy Hence it follows that parallel
vectors have proportional coordinates.

Let the basis e,, ¢,, ey consist of three pairwise perpen-
dicular unit vectors whose triple product is equal to +1.
We now find the scalar product of the veclors r and r' wilh
the coordinales Ay, hy, Ay and A;, A, Aj, respectively.

We have

r = MAe, + Ao, + Ageg, r’ = Aley + Aje, -+ Aleg. (x+)
=1,

Whence, taking into account that e; = e¢; = e

C1l, == €g€y == €3¢, = O, we get

= MA 4+ Aghl -+ Agh.,

Let us find the coordinates of the vector r X r’. Taking
into consideration the representations (s+) for the vectors
r, r" and the relations ¢; X e, = ey, ¢, X e; = e, ¢; X
X e, = ¢,, we obtain

FoX = (g — AgAL) e F (Agh) — AAD) e, -
+ (MM — M) ey
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Hence the coordinates of the vector r X r':
by Ag Ay My Ay Ay
Ay Aj hy A, Ay A
We finally compule the triple product of the vectors
PO has by r (AL M A, 1T (A A A,
We have
(re'r")y = (r X r')r" =

b )

bo sl e A M e
= % A Ny =
AT I T L P
Ay Ay A
=[n
AA A
EXERCISES

1. Show that the coordinates of the vector r relative to
the basis e,;, e,, ¢, are given by the equalities
A, == (reqey) _ (regeq) — (reqey)
! (eyeqey) ' 2 (ereqey) ' 8 (egeqe;) *

2. Show that the coordinales of the vector r relative
to the basis (e, X ey), (eg X ey), (e; X e,) are respec-
tively equal to

_ rc, _ 7Cy _ ey
1T (eregey) T T2 (egegey) T 8T (eregey) ¢
3. Decomposing the vectors «, b, ¢, on the orthogonal
basis, prove the identity.
aa ad ac
(abec)>=|ba 0O Obc|,
ca ¢b ec
using the determinant multiplication theorem.
4. Prove the identity

(@ X b, b Xe¢, ¢ X a)= (abec)
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5. Show that the volume of a triangular pyramid with
the lateral edges a, b, ¢ and face angles a, f, y is
1 cosy cosP|!/?
V=%abc cosy 1 cosa
cosfp cosa 1
6. Derive the formula for the volume of a triangular

pyramid with the lateral edges a, 6, ¢ and the dihedral
angles at these edges A, B, C.



Chapter 5

Rectangular Cartesian Coordinates

in Space

Sec. 5-1. Cartesian Coordinates

Let us draw from an arbitrary point O in space three
straight lines Oz, Oy, Oz not lying in one plane, and lay
off on each of them from the point O three non-zero
vectors ey, e,, e, (Fig. 65). According to Sec. 4-6, any

—_—
vector OA allows a unigque represenlation of the form

—
O0A = zxe; + ye, + ze,.

The numbers x, y, z are called the Cartesian coordinates
of a point A.

The straight lines Oz, Oy, Oz are termed the coordinate
axes: Ox is the z-axis, Oy is the y-axis, and Oz is the z-axis.
The planes Ozy, Oyz, Oxz are called the coordinate planes:
Oxzy is the ay-plane, Oyz is the yz-plane, and Ozz is the
xz-plane.

Bach of the coordinate axes is divided by the point O
(i.e. by the origin of coordinates) into two semi-axes.
Those of the semi-axes whose directions coincide with
the directions of the vectors e,, e,, e, are said to be
positive, Lhe others heing negative. The coordinate system
thus obtained is called right-handed if (eyeye,) >0, and
left-handed if (e e e,) <O.

Geometrically the coordinates of the point 4 are obtained
in the following way. We draw through the point A
a plane parallel to the yz-plane. [t intersects the z-axis
at a point A, (Fig. 66). Then the absolute value of the
coordinate z of the point A4 is equal to the length of the
line segment 04, as measured by the unit leneth | e, |.
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It is positive if A, belongs to the positive semi-axis z,
and is negalive if A, belongs to the negative semi-axis x.
To make sure ol this il is sufficient to recall how the coor-

—
dinales of the vector OA relative to the basis ¢4, ¢, ¢,
are delermined. The other two coordinates of the poinl
(y and z) are delermined by a similar conslructlion.

Fig. 65. Fig. 66.

If the coordinate axes are mutually perpendicular, and
ey Cy, €, are the unit vectors, then ithe coordinales are
called the rectangular Cariesian coordinates.

Cartesian coordinates on the plane are introduced in
a similar way. Namely, we draw from the poinl O (i.e.
from the origin of coordinates) two arbilrary slraight
lines Oz and Oy (the coordinate axes) and lay off on
each axis (from the point O) a non-zero vector. Thus we
obtain the vectors e, and e,. The Cartesian coordinates
of an arbitrary point 4 are then determined as the coor-

—_
dinates of the veclor OA relative Lo Lhe basis e, e,.
Obviously, if the coordinate axes are mutually perpen-
dicular, and e,, e, are unit vectors, then the coordinates
defined in this way coincide with Lhose introduced in
Sce. 1-1 and are called the rectangular Cartesian coordi-
nates.
Below, as a rule, we shall use the rectangular Cartesian
coordinates. If otherwise, each case will be supplied with
a special mention.
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EXERCISES

1. Where are the poinls in space located if: (a) z =
M) y=0;@)z2=0 () 2=0,y=0;, () y=0, z =
=0; () z2=0, 2 = 0¢

2. lHow many points in space satisfy the following con-
ditions

lzl=a, |yl=0b, |z|l=c¢ if abes=0?
3. Where are the poinls in space siluated il
lzl<a, lyl<<b, lzl<e?

4. Let A be a vertex of a parallelepiped, 4,, 4,, A;
the vertices adjacent 1o 4, i.e. the end-points of the edges
emanating from 4. Find the coordinates of all the ver-
tices of the parallelepiped, taking the vertex A for the
origin and the vertices A4,, 4,, Ay for the end-points
of the hasis vectors.

5. Find the coordinates of the poinl into which the
pointl (z, y, 2z) goes when rotated about the straight line
joining the point A, (@, b, ¢) to Lhe origin through an
angle of o = #/2. The coordinate systerm is reclungular.

6. Solve Exercise 9 for an arbitrary co.

Sec. 5-2. Elementary Problems
of Solid Analytic Geometry

Let there be introduced in space Cartesian coordinates
zyz and let A, (x5, ¥y, 2) and A, (x5, Ys, 2,) be two
arbitrary poinls in space. Find the coordinates of the point A
which divides the line segment A, Aq in the ratio Ay : Ay
(Fig. 67).

N —
The vectors 4;4 and AA, are in the same direction,
and their absolule values are as A, : A,. Consequently,

_ —>
AAZAIA - 7\11AA2 = O,
or

— — — —>
Ay (OA — OAy) — A, (0A, — OA) = 0,



Ch. 5. Rectangular Cartesian Coordinates in Space 109

Whence
MO, - |—k10A2
)'l_l_ 2
Since the coordinates of the point 4 (1 y, z) are the

—_
0A==

same as the coordinates of Lhe vector OA we have
o T
MA-hky
MyyitMurs
M+2dy
_ Mz Mz,
Mtk
Let the coordinate syslem be rectangular. Express ihe

distance belween the poinis A, and A, in terms of their
coordinates.

y:

z
Ay
. A
Az
0
X y
Fig. 67. Fig. 68.

The distance belween the points A, and 4, is cqual
—_
to the absolute value of the vector 4,4, (Fig. 68). We
have
—_— —>
A A, =04, — 04, = e, (xg — ) + ¢y (Yo — ¥1) +
+ €, (Zz - zl)'
Whence
(414.) = (1 — 1) + (Yo — y0)® + (2 — z)%
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FEzpress the area of a triangle in the xy-plane in terms
of the coordinates of its vertices: Ay (zy, y1, 0), Ag (Ta, Yo,
0), and 43 (x5, y3, 0).

—> >
The absolute value of the vector A,4, X A;A; is
equal to twice the area of the triangle A4,4,43;

To— Ty Ya— Uy
T3—Zy Ys—Uh
Consequently, the area of the triangle
1 Z2—% Yo Uy

T3 — 2y Ys— Yt

2
Express the volume of a tetrahedron A 4,434, in terms
of the coordinates of its vertices.

—_— —_—
A1A2 X A1A3 = Gz

— —
The triple scalar product of the vectors 4,4, 4,43,

—

A4, is equal (up to a sign) to the volume of the paralle-
lepiped constrncted on these vectors and, consequently,
to six times the volume of the tetrahedron A4,4.4:4,.
Hence

Lo—2Zy Ya—UY1 2932

Ta—Zy Ys—Y1 23—3q|.

Ly— &y Ys—Y1 Z2—72

<
fl
Oh, —_—

EXERCISES

1. Find the distance between two points expressed
in terms of Cariesian coordinales if the positive semi-
axes form pairwise the angles a, B, y, and e,, ¢, ¢,
are unil vectors.

2. Find the centre of a sphere circumscribed about
a tetrahedron with the vertices (e, 0, 0), (0, D, 0),
9, 0, ¢), (0, 0, 0).

3. Prove that the straight lines joining the mid-points
»f the opposite edges ol a telrahedron intersect at one
point. Express the coordinates of this point in terms of
the coordinales of the vertices of the tetrahedron.

4, Prove that the straight lines joining the vertices
of a letrahedron to the centroids of the opposite faces
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intersect al one point. Express its coordinates in terms
of the coordinates of the vertices of the tetrahedron.

5. Let A; (z;, y;, 2;) be the vertices of a tetrahedron.
Show that the points with the coordinates

r = M2 + A2y + AgZs 4+ Ayy,
Y = Mys + Ag¥e + Agys + Mgy
2 = M2y + Agzy + Agz3 + A,z
arc situated inside the tetrahedron if A, >0, A, >0,
kg >O, 7\«4>0, 7‘41"‘]"%2‘!‘&3"—?\44:1-
6. Express the area of an oblique triangle in terms of
the coordinates of its vertices. The coordinate system is

reclangular.
7. Show that the formula for computing the volume of
a tetrahedron expressed in terms of the coordinates of its

vertices is reduced to the form
Ty ¥y 2 1

o~

zy Yp 2z 1

zy Yy 23 1|

r, Y oz 1

8. For four points A; (z;, y;, 2;) to lie in one plane it

is necessary and sufficient that
Ty oz 1
Ty Yy 22 1
3 ys 23 1
oy, % 1

Prove this.

See. 5-3. Equations of a Surface
and a Curve in Space

Suppose we have a surface (Fig. 69).
The equation
fl y 2)=0 (*)

is called the equation of a surface in implicit form if the
coordinates of any point of the surface satisfy this equa-
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tion. And conversely, any three numbers z, y, zsatisfying
the equation () represent tlie coordinates of one of the
points of the surface.

The system of equations

x=fi W v), y=_/wrv, z2=7[@ur), (++)

specifying the coordinates of the points of the surface as
a funclion of two parameters (u, v) is called the parametric
equaiion of a surface.

Eliminating the parameters u, v from the system (++),
we can obtain the implicit equation of a surface.

kZ

A
: ]
N

Fig. 69. Fig. 70.

Form the equation of an arbitrary sphere in the rectangular
Cartesian coordinates xyz.

Let (z¢, Yo, 2o) be the centre of the sphere, and R its
radius. Bach point (z, y, z) of the sphere is located ai a
distance R from the centre, and, consequently, satisfies the
equation

@ —2)2+ ( —yo) + (2 — 202 — R2 =0 (sx%)

Conversely, any point (z, y, z) satisfying the equation
(##+) is found at a distance R from (z,, y, 2,) and,
consequently, belongs to the sphere. According to the
definition, the equation (+++) is the equation of a sphere.
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Form the equation of a circular cylinder with the axis Oz
and radius R (Fig. 70).

Let us take the coordinale z (v) and the angle (x) formed
by the plane passing through the z-axis and the point
(z, y, z) with the zz-plane as the parameters u, v, charac-
terizing the position of the point (z, y, z) on the cylinder.
We then get

z=Rcosu, y=Rsinu, z=uv,

which is the required equation of the cylinder in parametric
form.

Squaring the first two equations and adding termwise,
we get the equation of the cylinder in implicit form:

$2 + y2= RE_

Suppose we have a curve in space. The system of equa-
tions

fl (xi Y, Z) = 01 f2 (.Z, Y, Z) = 0

is called the equation of a curve in implicit form if the coor-

dinates of each point of the curve satisfy hoth equations.

And conversely, any three numbers satisfying both equa-

tions represent the coordinates of some point on the curve.
A system of equations

z=q (1), y=0:), z2=09s(),
specifying the coordinates of points of the curve as a func-
tion of some parameter (¢) is termed the equation of a curve
in parametric form.

Two surfaces intersect, as a rule, along a curve. Obvious-
ly, if the surfaces are specified by the equations f,(z, y, z)=
=0 and f, (z, y, z) = 0, then the curve along which
they intersect is represenied by a system of equations

fl (JT, Y, Z) = 07 f2 ((L‘, Y, Z) = 0.

Forin the equation of an arbitrary circle in space. Any
circle can be represented as an intersection of two spheres.
Consequently, any circle can be specified by a system of
equations

(2= a2+ (y — b2+ (2— )2 — RE =0, |
(2—as)2+ (y—by)2 + (z2—¢y)2— Ba=0.
8—0406
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As a rule, a curve and a surface intersect al separate
points. If the surface is specified by the equation f (z, y,
z) = 0, and the eurve by the equations f, (z, y, z) =0
and f, (z, y, z) = 0, then the points of intersection of
the curve and the surface satisfy the following system
of equations:

f(a:’ y, Z) = O’ f] (JS, yv Z) =O’ f% (IL', y, Z) =O'

Solving this system, we find the coordinates of the
points of intersection.

EXERCISES

1. Show that the surface represented by the equation
2?2 4+ y? -+ 22+ 2ax + 20y + 2cz2 4+ d =0,

is a sphere if a* + b + ¢ — d >0. Find the coordi-
nates of its centre and radius.
2. A circle is specified by the intersection of two spheres

fi(z, y, 3) =224 y2 4224 20,2+ 2byy + 2¢,2+ dy = 0, }
fa(z, y, 2) =2+ y%+ 22+ 2a,x + 20,y + 2¢,2 + dp = 0.

Show that any sphere passing through this circle can
be represented by the equation

Mfy (@, ¥y 2) + Aofs (@, ¥, 2) = 0.

3. Show that the surfacespecified by an equation of the
form ¢ (z, y) =0 iscylindrical. It is generated by straight
lines parallel to the z-axis.

4. Form the equation of a right circular cone with the
axis Oz, vertex O, and the vertex angle equal to 2a.

5. Form the equation of a surface described by the mid-
point of a line segment whose end-points belong to the

curves y, and 7,
) z=ax2,} i z=by2,}
"y —o, =0, f°

6. Form the equation of a surface generated by a
straight line which intersects the curves y, and vy,, re-
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maining all the time parallel to the yz-plane:

% z=f($)’} 0! z=(P(x)’} (a4 b)
y=a, y=>
7. Show that the curve
z2=0 (), y=0 (z>0),

when revolving about the z-axis, generates a surface
specified by the equation

z=9 (V22 4+12).

8. Show that a cylindrical surface, with the generatrix
parallel to the z-axis, pas- X!
sing through the curve

2= f), z= o),
is specified by the equation z’
f@) — o) =0.

See. 5-4. Transformation of y
Coordinates e

Let there be introduced in €z
space two Cartesian systems
of coordinates zyz and 2'y’z’
(Fig. 71). Express the coordi- Fig. 71.
nates of an arbitrary point
A in the coordinate system z'y'z in ferms of its coordi-
nates in the coordinate system zyz.

We have

-'6 ’ ’ ’
O'A=z'ex+y'ey+2'e,,
.‘I9 ’ ’ r

0 0 = xoex’ + Yoly’ —,_ zoez’a
—_
OA=ze,+ ye, + ze,,

A AL AR
O'A=00404=(z}ex +y.ey+z2) +(zex+-yey+-ze,).
8%
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The vectors e,, e,, e, allow a unique representation
in terms of the veclors e,.,, e, €, :

Gx == q1€x" —i‘ aizey' 'Jl‘ aisez',

A
€y = Og1€x’ | Olgp€y’ + U3y, (*)
€, = Ug18x’ + Qgply + U336,

where o;; are the coordinates of the vectors e,, ¢,, e,
relative to the basis e, e,, e,.
Substituting these expressions into the formula for

—
0'A, we get

—

0’4 = (x; + 01 + gy + ag2) € +
+ (Yo + 0127 + oy + 0307) €, +
+ (Z:, + aya® + aggy + 352) €7,

where the expressions in parentheses are the coordinates of
—

the vector O'A relative to the basis e,., e,, e, i.e.
the coordinates of the point A in the system z'y’z’. We
get the required formulas:

T = anr + Ay Y + 312 + x;,
Y = Qo + Qggy + %302 + Yo (x+)
2 = Q43T + Og3y + U333 + 2,

The coefficients of these formulas have the following
meaning: ayq, @9, %3 are the coordinates of the vector
e, relative to the basis e, ey, €,; ag, Qgg %y the
coordinates of the vector e,; ag, agy, @33 the coordi-
nates of the vector e,; z;, y,, z, the coordinates of the
point O in the coordinate system z'y'z’.

We note that the determinant

®yg OQgq g4
A=lay; g ag|7#%0
®y3 Oz O3
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Indeed, one can directly check that
®gy Qg CQyg
(exeyez)= QUgq gz Ag3 (ex'eyfez')-
Qgqy O3y O3z

Since (e.eye,) # 0, then A 3= 0.

For all systems of coordinates z'y’z’ which can be con-
tinuously transformed into one another the determinant A
has one and the same sign. (The continuity of changing
a system of coordinatesisunderstood as the continuity of
changing the origin of coordinates O’ and the basis e/, e,
e,.) Indeed, since (e,e,e,) is non-zero, A is also non-
zero. Besides, since A changes continuously, it cannot
attain values of different signs.

If A 5= 0, then the system of formulas (++) may always
be interpreted as a passage from a coordinate system
z2'y’s" to the coordinate system zyz whose origin is situat-
ed at point (x;, y,, 2,) and the basis vectors are expressed
in terms of the basis vectors of the system 2'y’'z
by the formula ().

If both systems of coordinates xyz and z'y’z’ are rectan-
gular, then the coefficients of the formulas (xx) satisfy
the orthogonality conditions

2 2 2 __ —
ol ol Fafy =1,  Olyy0py - Qyallyy - 0y30e3 =0,
2 2
O+ g+ 0y =1,  Olpyigy + Appligy + Op3tiss =0, (#xx)
2 2
g+ gt ag =1,  Ogi0us -+ ol + Ctagtys =0,
which are obtained if use is made of the formulas (x)
and the following relationships
ey=ey=er=1, ece,=e e, =ee, =0,
ei::e;;:ez;:i’ exweylze],:ezf=el;ex¢=0_
Conversely, if the conditions (x+s) are fulfilled, then
the formulas (#+) can always be interpreted as a passage
from a rectangular coordinate system z'y’z’ to the system
of rectangular coordinates xyz whose origin is located at

point (x;, y,, 2,) and the basis vectors are specified by
the formula (). By virtue of the conditions (+++) the
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basis vectors ey, e,, e, are unit vectors which are per-
pendicular pairwise.

In the case of rectangular Cartesian coordinates zyz
and z'y’z’ we have A = 4-1, where A = }-1 if one system
of coordinates can be brought in coincidence with the
other system by motion. If it cannot be done by motion
without mirror reflection, then A = —1.

EXERCISES

1. What will be the formulas for transforming the coor-
dinates if the zy-plane coincides with the 2'y’-plane?

2. It is known that in a certain system of coordinates
the equation

a2 + Qpal® + a352° + 2ay52Y + 2a95yz + 2ag328 = ¢

specifies a sphere. Find the angles between the coordi-
nate axes.

3. Suppose we have two systems of coordinates zyz
and z'y’z with acommon origin O. Let e,, e,, e; be the
basis of the first system, and e; X e,, e, X €3, €3 X e,
the basis of the second system. Derive the transformation
formulas from one system to the other.

4. The transition from one rectangular Cartesian system
of coordinates zyz to the other rectangular Cartesian
system of coordinates z'y’z" with the same origin can be
accomplished in three stages:

Zy=xcos@—ysin g,

1 yy=2xsin ¢4 ycos o,
2 =71;
Ty = Ty,

11 Yo=Yy c080—2z,;sin0,

29 =Y, 8in 0 + 2, cos 6;
2’ = Ty c08 P— Y,y sin P,

I Y’ = 2y sinp - y, cOS VP,
7' =z,

The angles ¢, 0, ¢ are called Euler’s angles. Find out
their geometrical meaning.



Chapter 6
A Plane and a Straight Line

Sec. 6-1. The Equation of a Plane

Form the equation of an arbitrary plane in the rectangular
Cartesian coordinates zyz.

Let 44 (2o, Yo. 3o) be a point in a plane and = a non-
zero vector perpendicular to the plane. Then whatever

the point of the plane A (z, y, z) is, the vectors AOA
and n» are mutually perpen-
dicular (Fig. 72). Hence,

AAn=0. @

Let a, b, ¢ be the coordi-
nates of the vector n with
respect lo the basise,, ¢, e,.

. —_ —_—

Then, since 4,4 = 04 —
—O0A,, it follows from (»)
a(@—zo) + by —yo) +

Hc (32— zy) = 0. (+%) Fig. 72.
This is the required equation.

Thus, the equation of any plane is linear relative to the
coordinates z, y, 2.

Since the formulas for transition from one Cartesian
system of coordinates to another are linear, we may
state that the equation of a plane is linear inany Cartesian

system of coordinates (bul not only in a rectangular one).
Let us now show that any equation of the form

ar +by+cz4+d=20
is the equation of a plane,
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Let 24, Yo, 2, be a solution of the given equation. Then
azy + by, + czo+d =0
and the equation may be rewritten in the form
a@—zo)+ by —yo)+ cz—32)=0. ()

Let » be a vector with the coordinates a, b, ¢ with
respect to the basis e,, e,, e,, A, a point with the
coordinates z,, Yo, %, and A a point with the coordi-
nates z, y, z. Then the equation (s++) can be writien
in the equivalent form

Fa—
AA.-n=0.

Whence it follows that all points of the plane passing
through the point A, and perpendicular to the vector n
(and only they) satisfy the given equation and, conse-
quently, it is the equation of this plane.

Let us note that the coefficients of z, y, z in the equa-
tion of the plane are the coordinates of the vector per-
pendicular to the plane relative to the basis e,, €,, e,.

EXERCISES

1. Form the equation of a plane given two points
(1, v, 2z) and (zy, Yo, 29) situated symmetrically
about it.

2. Show that the planes

ax 4+ by + ez + d; =0,
ax + by + cz+ dy, =0, d, 5 d,,

are parallel (do not intersect).
3. What is the locus of points whose coordinates satisfy
the equation

(az + by 4 cz + d)? — (az + Py + yz 4 6)2 = O?
4. Show that the curve represented by the equations
flx, y, 2) + ez + by + ¢z + dy =0,
f @y, 2) + ayz + byy + caz + d =0,
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is a plane one, i.e. all points of this curve belong to a
plane.
5. Show that the three planes specified by the equations

ar +by+cz+d=0,
az + By + vz + 6 =0,
Afaz + by + cz) + p(az+ Py + v2) + k=0,

have no points in common if % = Ad + pé.
6. Write the equation of the plane passing through the
circle of intersection of the two spheres

2+t 2t artby+ ezt d=0,
24+ P+ 2 +arx+ Py+yz+8=0.

7. Show that inversion transforms a sphere either into
a sphere or into a plane.

8. Show that the equation of any plane passing through
the line of intersection of the planes

ax + by + cz+ d =0,
azx + Py + yz+ 6 = 0,
can be represented in the form
Alax 4+ by + cz+d) + p(az+ Py + vz + 8) = 0.
9. Show that the plane passing through the three given
points (z;, y;, z;) (i =1, 2, 3) is specified by the equa-
tion
z y 2z 1

ze oy 5 1
Zy Yo 2 1
T3 Yy 323 1

=0.

Sec. 6-2. Special Cases of the Position
of a Plane Relative to a Coordinate System

Let us find out the peculiarities of the position of a plane
relative to a coordinale system which take place when its
equation is of this or that pariticular form.

1. a = 0, b = 0. Vector r (perpendicular to the plane)
is parallel to the z-axis, The plane is parallel to the
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zy-plane. In particular, it coincides with the zy-plane
if d is also zero.

2. b =0, ¢ = 0. The plane is parallel to the yz-plane
and coincides with it if d = 0.

3. ¢ =0, a = 0. The plane is parallel to the zz-plane
and coincides with it if d = 0.

4. a =0, b=£0, ¢~ 0. Vector r is perpendicular to
the z-axis: exp = 0. The plane is parallel to the z-axis,
in particular, it passes through it if d = 0.

5. a0, b =0, ¢c5%=0. The plane is parallel to the
y-axis and passes through it if d = 0.

6. a5=0, b5~ 0, ¢ = 0. The plane is parallel to the
z-axis and passes through it if 4 = 0.

7. d = 0. The plane passes through the origin (whose
coordinates 0, 0, 0 satisfy the equation of the plane).

If all the coefficients are non-zero, then the equation
may be divided by —d. Then, putting

id

_8_, _i4 _a_
a - c ="

2 b b

we get the equation of the plane in the following form:
z y z
< B +$ =1. (*)

The numbers a, B, y are equal (up to a sign) to the
segments intercepted by the plane on the coordinate axes.
Indeed, the z-axis (y = 0, z = 0) is intersected by the
plane at point (@, 0, 0), the y-axis at point (0, B, 0),
and the z-axis at point (0, 0, y). The equation (*) is called
the intercept form of the equation of a plane.

We conclude with a note that any plane not perpen-
dicular to the zy-plane (c 5<0) may be specified by an
equation of the form

2 =pz+qy+ I

EXERCISES
1. Find the conditions under which the plane
axr +by+cz4+d=0

intersects the positive semi-axis z (y, 2).
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2. Find the volume of the tetrahedron bounded by the
coordinate planes and the plane

az + by +ecz+d=0

if abed 5~ 0.
3. Prove that the points in space for which

fzl+lyl4+lzI<a,

are situated inside an octahedron with centre at the origin
and the vertices on the coordinate axes.

4. Given a plane o by the equation in rectangular
Cartesian coordinates

ax + by + cz + d = 0.

Form the equation of the plane ¢’ symmetrical to
o about the zy-plane (about the origin O).
5. Given a family of planes depending on a parameter

ar 4+ by +cz+ d+ A(ax + By 4+ vz + &) = 0.

Find in this family a plane parallel to the z-axis.
6. In the family of planes

(@, + byy + ciz + dy) 4 A (@ez + by + o2 + dy) +
+ p(asz + bgy + 32+ dg) = 0

find the plane parallel to the zy-plane. The parameters of
the family are A and p.

Sec. 6-3. The Normal Form of the Equation
of a Plane

If a point A (z, y, z) belongs to the plane
ax + by +cz+d=0, *)

then its coordinates satisfy the equation (x).
Let us find oul what geometrical meaning has the expres-
sion

ar + by +cz + d
if the point A does not belong to the plane.
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We drop from the point 4 a perpendicular onto the
plane. Let A, (zo, Yo Zo) be the foot of the perpen-
dicular. Since the point 4, lies on the plane, then

azy + by, + czo + d = 0.
Whence
ax + by + ¢z + d =
=a(@—2) +bH —yo)+clz—3) =
_
= n’AoA == "'l_:ln I 61
where » is a vector perpendicular to the plane, with

the coordinates a, b, ¢, and § is the distance of the point A

from the plane.
Thus
ar + by +cz + d

is positive on one side of the plane, and negative on the other,
its absolute value being proportional to the distance of the
point A from the plane. The proportionality factor
4+ |n|==xVa2+b2+c2.

If in the equation of the plane

at B e =1,
then

ax + by +cz 4+ d

will be equal up to a sign to the distance of the point
from the plane. In this case the plane is said to be specified
by an equation in the normal form.

Obviously, to obtain the normal form of the equation
of a plane (), it is sufficient to divide it by

LV ETEFA

EXERCISES

1. The planes specified by the equations in rectangular
Cartesian coordinates

ar + by +cz+4+ d =0,
ax + by + ¢z + d’ =0,
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where d 5= d’, have no points in common, hence, they
are parallel. Find the distance between these planes.
2. The plane

ax+by+d=0

is parallel to z-axis. Find the distance of the z-axis from
this plane.

3. What is the locus of points whose distance to two
given planes are in a given ratio?

4. Form the equations of the planes parallel o the plane

ar + by + ez+d =0

and located at a distance § from it.
5. Show that the points in space satisfying the condi-

tion
| ax 4+ by +cz + d | < 8%,
are situatéed between the parallel planes
ax 4 by + ¢z 4+ d + §% = 0.

6. Given are the equations of the planes containing
the faces of a tetrahedron and a point M by its coordi-
nates. How to find out whether or not the point Af lies
inside the tetrahedron?

7. Derive the formulas for transition to a new system

177

of rectangular Cartesian coordinates z'y’z’ if the new
coordinate planes are specified in the old system by the
equations

ax + by + ez + dy =0,
asx + boy + ¢z + dy = 0,
agx + bgy + cgz + dg = 0.

Sec. 6-4. Relative Position of Planes
Suppose we have two planes
ax+byy+cyz+dy =0,
as% + boy + 324 dy = 0. } (=)

Find out under which condition these planes are: (a)
parallel, (b) mutually perpendicular.
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Since a,, by, ¢; are the coordinates of vector », pcerpen-
dicular to the first plane, and a,, by, ¢, are the coordinates
of vector m, which is perpendicular to the second plane,
the planes are parallel if the vectors 2¢;, 7, are parallel,
i.e. if their coordinates are proportional:

G _b__a

o by o
Moreover, this condition is sufficient for parallelism of
the planes if they are not coincident.

For the planes () to be mutually perpendicular it is
necessary and sufficient that the mentioned vectors n, and
r, are mutually perpendicular, which for non-zero
vectors is equivalent to the condition

nnr, =0 or aa,+ biby + cicg = 0.

Let the equations (+) specify two arbitrary planes.
Find the angle made by these planes.

The angle 0 between the vectors », and n, is equal to
one of the angles formed by the planes and is readily
found. We have

ny- n,= |n; | |n, | cosb.

Whence

a1a3+biby+cacy
Va+ui+dVatoi+d

Suppose we have three different planes:

x4 by +eyz+dy =0,
@yt + byy + €92+ dy =0, (#%)
a5 +bsy +csz+ds=0.

The planes (x*) either intersect at one point, or are
parallel to a straight line, in particular, they pass through
a straight line.

If the planes («*) intersect at one point, then the system
of equations (++) has a unique solution. As is known from
algebra, it will be when and only when the determinant

cos 0=
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of the system
a; by ¢y
A=|ay by c,|5~0.
as b c3

It can be explained using another method. If the planes
intersect at one point, then the vectors n, (ay, by, ¢),
n, (ag, by, ¢3), Rg (as, bs, c3) cannot be parallel to one
plane (since the planes, intersecting at a point, would
then intersect along a straight line), and, consequently,
their triple product equal to the determinant A is non-
zero.

The planes () will be parallel to a straight line if
A = 0 which means that the vectors n,, n,, s are paral-
lel to some plane. If in addition the system (*+) is com-
patible (i.e. has a solution) then the planes intersect along
a straight line.

EXERCISES
1. Find the angles formed by the plane
ax+ by +cz+d=0

and the coordinate axes.
2. Find the angle formed by the plane

z=pz+q +1

with the zy-plane.
3. Show that the area of a figure F contained in the
plane
z=pz+ qy+ !

and the area of its projection F onto the zy-plane are
related as follows

S(F)=VT+p*+ ¢S (F).
4. Under what condition does the plane
ax +by+cz+d=0

intersect the z- and y-axes at equal angles? Under what
condition does it intersect all three axes?



128 Analytical Geometry

5. Show that the plane passing through the point
(o, Yo» 2o) and parallel to the planc

axr + by + cz + d =0,
is represented by the equation
a(@— o)+ by —yo) + ¢ (z—320) =0. i

6. Show that the plane passing through the point
(zo. Yo» 20) and perpendicular to the planes

ax + by + ¢z + d; =0,
ax + by + coz + d, = 0,
is specified by the equation
T—Zy Y—Yo 2%
ay by 4
ay by Cy

=0.

7. Among planes of the pencil
M + by + oz + dy) + po(@g + boy + o2 - dg)=
=0
find the plane perpendicular to the plane
ax + by + ¢z + d = 0.
8. Let
ax 4 by + ¢z + dy =0,
as% - boy 4 22 +dy =0,
a3 +byy +cgz+d3 =0
be the equations of three planes not parallel to a straight
line. Then any plane passing through the point of

intersection of the given planes has the equation of the
form:

M (ayz -+ by +ez+dy) +
+ Ay (agz + boy +cp24-dy) +
+ Ag (3 +-byy + 52 +-dg) = 0.
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Sec. 6-5. Equations of the Straight Line

Any straight line can be specified as an intersection
of two planes. Consequently, any straight line can be
specified by the equations

a1x+biy+ciz+di=0a} (+) 4\2
ayz + boy + €324 dy =0, A

the first of which represents /’43/0/
%

one plane and the second the — A
other.Conversely,any compai-
ible system. of two such inde-
pendent equations represents 0
the equations of a straight line.

Let A, (o, Yo, 20) be a fixed X y
point on a straight line, Fig. 73
A (z, y, 2) an arbitrary point g 19
of the straight line, and
e (k, I, m) a non-zero vector parallel to the straight line

—_
(Fig. 73). Then the vectors 4,4 and e are parallel and,
consequently, their coordinates are proportional, i.e.

T—% _ Y—Yo _ 2—3
E 1 T m (++)

This form of the equation of a straight line is called’
canonical. It represents a particular case of (x), since it
allows an equivalent form

T—% _ Y% Y=Y __ 2—2%
k A 1 7 om0
corresponding to (x).

Suppose a straight line is represented by the equations
(*). Let us form its equation in canonical form. For this
purpose it is sufficient to find a point 4, on the straight
line and a vector e parallel to this line.

Any vector e (k, I, m) parallel to the straight line
will be parallel to either of the planes (x), and conversely.
Consequently, %, I, m satisfy the equations

aik+bil+cim=0, }
ask + byl + com = 0.

(k)

9—-0406
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Thus, any solution of the system (x) may be taken
as T, Yo» 2o for the canonical equation of the straight
line and any solution of (xx) as the coefficients %, 1, m,
for instance
by ¢4 €1 a4y

k=

? b

by ¢ Cp Qg

From the equation of a straight line in canonical form
we can derive its equations in parametric form. Namely,
putting the common value of the three ratios of the ca-
nonical equation equal to Z, we get

z=kt+ 29, y=1U-+ yo = mt + z,

which are the parametric equations of a straight line.

Let us find out what are the peculiarities of the position
of a straight line relative to the coordinate system if some
of the coefficients of the canonical equation are equal to zero.

Since the vector e (k, !, m) is parallel to the straight
line, with m = 0 the line is parallel to the zy-plane
(ee, = 0), with I = O the line is parallel to the zz-plane,
and with £ = 0 it is parallel to the yz-plane.

If . =0 and ! = 0, then the straight line is parallel
to the z-axis (e is parallel to e,); if I =0 and m = 0,
then it is parallel to the z-axis, and if k¥ = 0 and m = 0,
then the line is parallel to the y-axis.

We conclude with a note that a straight line may be
specified by the equations of the form (x) and (¥+) in
Cartesian coordinates in general (and not only in its
particular case, i.e. in rectangular Cartesian coordinates).

EXERCISES

1. Under what condition does a straight line repre-
sented by the equation in canonical form (*+) intersect
the z-axis (y-axis, z-axis)? Under what condition is it
parallel to the plane zy (yz, zzx)?

2. Show that the locus of points equidistant from three
pairwise non-parallel planes is a straight line.

3. Show that the locus of points equidistant from the
vertices of a triangle is a straight line. Form its equations
given the coordinates of the vertices of the triangle.
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4, Show that through each point of the surface
2 = axy

there pass two straight lines entirely lying on the surface.
5. If the straight lines specified by the equations
aZ+by +ecyz4-d; =0, }
Ao + boy + €o2 -+ dy ==

a3z +-bgy + 3z ds =0, }
a,x+ by +ciz+d, =0,

and

intersect, then )
ay by ¢y dy
ay by ¢y dy
=0.
as by cg ds
a, b, ¢, d,
Show this.

Sec. 6-6. Relative Position of a Straight Line
and a Plane, of Two Straight Lines.

Suppose we have a straight line and a plane respectively
specified by the equations

ar + by + ¢z 4+ d =0,

T—Zy _ Y—Yo _ 2—3

k1 m

Since the vector (a, b, ¢) is perpendicular to the plane,
and the vector (k, !, m) is parallel to the straight line,
then the straight line and the plane will be parallel if these
vectors are mutually perpendicular, i.e. if

ak + bl + em = 0. ()

Moreover, if the point (z,, yq, 2,) belonging to the
straight line satisfies the equation of the plane

axy + by, + czo + d = 0,
then the straight line lies in the plane.
BEd
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The straight line and the plane are mutually perpendicular
if the vectors (a, b, ¢) and (k, I, m,) are parallel, i.e. if

R (3+)

We can obtain the parallelism and perpendicularity
conditions for a straight line and a plane if the straight
line is represented by the intersection of the planes

ax + by + ¢z + dy =0,
ayx + by + coz + dy = 0.

It is sufficient to note that the vector with the coor-
dinates
by ¢

by ¢,

1 4y ay by

k=
ay by

j— , —

?

€y Gy

is parallel to the straight line and make use of the condi-
tions () and (+*).

Suppose two straight lines are specified by the equations
in canonical form

" z—7z" (***)

kll e lll = mll

Since the vector (&', ', m’) is parallel to the first
line, and the vector (k”, 1", m”) is parallel to the second
line, then the lines are parallel if

kl ll ml

T m
In particular, the straight lines coincide if a point of
the first line, say (¢, y’, 2z'), satisfies the equation of
the second line, i.e. if
a:l__xll _ yl__yll _ z’_z”
kll - l” _ mn
The straight lines are mutually perpendicular if the vec-
tors (k', U', m') and (K", 1", m") are mutually perpen-
dicular, i.e. if
klkn + lllll + m/mn — 0.
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If two straight lines are specified by equations of one
of the considered forms, then it is not difficult to find the
angle between them. In this case it is sufficient to find the
angle between the vectors which are parallel to the straight
lines. For instance, if the straight lines are represented
by equations in canonical form (+sx), then for one of
the two angles 6 formed by the lines we obtain

k’k”+l’l"+m1nll’

cos b= .
]/k/2+lrz+m12 V'k112+ll/2+m02

EXERCISES

{. Show that if for the straight lines specified by the
equations (xxx),
xl_z’l yl_yll Z/—ZII
K U m |=0,
kll lll mll
then the lines are either parallel, or intersect.
2. Find the distance hetween two skew lines represent-
ed’ by equations in canomical form.
3. Find the parallelism (perpendicularity) condition
for the straight line
aiz-}-biy-}-ciz—}—d1=0,}
and the plane
azr+ by + ¢cz+d =0.

4. Find the parallelism (perpendicularity) condition
for the straight lines

ayx+ by + ¢4z 4-dy =0, }
Ay + byy 4,2+ dy =0
and
asz + bsy +cz+ds =0,
ayx -+ by 442+ d, =0. }
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5. Find the equation of a conical surface with the ver-
tice (¢, Yo, 20), Whose generatrices intersect the plane
ax+ by +cz+d=0
at an angle a.

6. Write the equation of the straight line passing
through the point (z,, yq z,) and parallel to the planes
ax + by + ¢z + dy =0,
ax + bgy + coz + dy = 0.

7. Form the equation of a conical surface with the

vertex at point (0, 0, 2R) if it passes through a circle
specified by the intersection of the sphere

2+ y? + 2 = 2Rz
with the plane
ax+ by + cz+ d=0.

Find out what is the intersection of this conical sur-
face and the zy-plane.

8. Stereographic projection of a sphere on a plane is
defined as the projection from an arbitrary point of this
sphere on the tangent plane at the diametrically opposite
point. Show that in stereographic projecting to the circles
on the sphere there correspond circles and straight lines
on the plane of projection.

Sec. 6-7. Basic Problems on the Straight Line
and the Plane

Form the equation of an arbitrary plane passing through
the point (zg, Yo Zo)-
Any plane is specified by an equation of the form

ax + by + ez + d = 0.
Since the point (z,, Y, 2,) belongs to the plane, then
azy+ by, + ¢z + d = 0.
Hence the equation of the required plane is
ax + by 4 ez — (azy + by, + cz9) = 0,
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or
a(x—2zg) + by —yo) +clz—3z)=0.

Obviously, for any a, b, c this equation is satisfied by the
point (zo, Yo, Zo)-

Form the equation of an arbitrary straight line passing
through the point (x¢, Y¢» 2¢)-

The required equation is

T—%y __ Y—Yo __ 2—%

k I m

Indeed, this equation specifies a straight line passing
through the point (x4, y,, %,) whose coordinates obviously
satisfy the equation. Taking arbitrary (not all equal to
zero) values for k&, I, m, we obtain a straight line of an
arbitrary direction.

Form the equation of a straight line passing through two
given points («’, y', z') and (z", y”, 2”).

The equation of the straight line may be written in the
form

z—z' y—y' __ z1—12

k I T m
Since the second point lies on the line, then

zll . 1:I y” — yl er__ zl

k1 m

This allows us to eliminate %, [, m, and we get the equa-
tion
z—z' _ y—y _ z—17

.’E"—ﬁ’ - yll_yl - z”__zl

Form the equation of a plane passing through three points
AI (x’, yl’ Z’), A” (x//’ yll’ Z”>, Am (xm’ yul’r; Z’”), not
lying on a straight line.

Let A (z, y, z) be an arbitrary point belonging to the
required plane. The three vectors

— —_—  ——
A’A, A’A”, AIAm
lie in one plane. Consequently,

— —_ —_—
(A4, A4, AA")=0,
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and we get the required equation
z—z2 y—y z—7
x!l_xl y"_yl Z”—z’ =O.
yﬂl—y' Z
Form the equation of a plane passing through a given
point (Z4, Yo 2o) and parallel to the plane

ar + by +cz+ d=0.

’ m ’

x"l — x Z

The required equation is
a(@—zo) + b(H—yo)+ c@—3z) =0

Indeed, this plane passes through the given point and is
parallel to the given plane.

Form the equation of a straight line passing through a given
point (xy, Yo, Zo) parallel to a given straight line

z—z'  y—y __ z—z
T 1l T 0m
The required equation is
T—Z, — Y—Yo — z2—12,
k l m

A straight line passing through a point (zy, Yo, 2,) and
perpendicular to a plane

ar 4 by 4+ ¢z + d = 0,
is specified by the equation

T2 _ Y=Yy __ 22

a l c

A plane perpendicular to a straight line
z—z'  y—y _ z—3

k I T om0

’

passing through a point (xq, Yo, 20), IS specified by the
equation

k(z—ax)+ 1@y —yo)+mE—3z) =0,
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Let us form the equation of a plane passing through a point
(zos Yo» 2o) and parallel to the straight lines

z—z' y—y' _ z—1
T U T om

" ”

r— . y—y .

kll l” m”

Since the vectors (&', ', m') and (k", I”, m”) are
parallel to the plane, their vector product is perpendic-
ular to the plane. Hence the required equation is
kl ll
kll l”

’ ’

m
m" k"

’ ’

lll m” = O 3

+ (¥ —Y) +(2—2)

(& — o)

which can be rewritten in a compact form:

T—Zxy Y—Yo 2—2
kK U m’ |=0.
kl’ lII mll

EXERCISES

1. Form the equation of a plane equidistant from two
skew lines represented by equations in canonical form.

2. Show that any plane passing through the straight
line

ay\r+by +¢z+dy =0, }
@97 + by + ¢z +dy =0,

is specified by an equation of the form

M@z +by + 6z + d) + b (@ + boy + €z + do) =
= 0.

3, Show that the plame passing through the straight
line .
z—z' _ y—y' _ z1—z

k / m

’
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and the point (x4, Yo, 2), not lying on the line is spec-
ified by the equation

T—Zy Y—Yo 2—3%
'—zy Y —yo 2 —3z|=0.
k l m

4, Show that any straight line intersecting the given
lines:

ax~+by+ecyz+dy =0,
ayx 4 by + 924 dy =0. }
asx +bsy + 32 4 dy =0, l
az+by+ciz+d, =0, )
is represented by the equations
Mayz +biy + ¢z + dy) + p (@92 + boy + ¢9z + dy) =0,
M (a3z+bgy +c32 4 ds) -+ p' (@ + Doy + caz + do) = 0.

5. Show that the conical surface generated by straight
lines passing through the origin and intersecting the
curve @ (z, y) = 0, z =1 is specified by the equation

o(2. 4)=0



Chapter 7

Surfaces of the Second Order
(Quadric Surfaces)

Sec. 7-1. A Special System of Coordinates

The surface of the second order (or the quadric surface) is
defined as a locus of points in space whose Cartesian coor-
dinates satisfy the equation of the form

0?4 g0y + agez® + 2a557Y + 2a55yz + 201572 +
+ 2a,,x + 2a,,y + 2a342z + a4, = 0. (*)

Obviously, this definition is invariant to the system of
coordinates chosen. Indeed, the equation of the surface
in any other system of coordinates z'y’z" is obtained from
the equation (+) by substituting z, y, and z by linear
expressions with respect to 2’, y’, 7', and, consequently,
in the coordinates z', y’, z’ will also have the form ().

Any plane infersects a quadric surface along a curve
of the second order. Indeed, since the determination of
surface is invariant with reference to the coordinate
system chosen, we may regard the plane zy (z = 0) as
a secant plane. And this plane obviously intersects the
surface along the second-order curve

a2 + 2a157Y + agol® + 2037 + 20549 + a4y = 0.
In particular, a right circular cone with the z-axis
Az = 2 4 2
is a surface of the second order and, consequently, is
intersected by any plane along a second-order curve.
If the secant plane does not pass through the vertex,

then a pair of straight lines is excluded and we have an
ellipse, hyperbola or parabola.
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To study the geometrical properties of a quadric sur-
face it is only natural to refer it to such a coordinate
system in which its equation will have the simplest form.

Now we are going to indicate a coordinate system in
which the equation of our surface will become considerably
simplified. Namely, the coefficients of yz, xz, and zy in
the equation will be equal to zero.

Consider the function F (4) of:a point A (z, y, 2z)
defined in the entire space, except for the origin, by the
equality

F(A)= 01172+ a0y + 09322+ 201,70y + 2a45y2 + 201472
$2+y2+ 22 .

On the unit sphere (2® + y® + z* = 1) it is bounded
and, consequently, reaches the absolute minimum at some
point A,. And since it is constant along any ray emanating
from the origin (F (Ax, Ay, Az) = F (z, y, 2)), then at
A, the function F reaches the ahsolute minimum of val-
ues with reference to the whole space (and not only on
the unit sphere).

Let us introduce new Cartesian coordinates z’, y’, 2’
with the origin O retained and taking the ray 04, for
the positive semi-axis z. As is known, the relation be-
tween the coordinates z,y, z andz’, y’, z’ is established
by the formulas of the form

T=0ayx oy +ay’,
Y =0 -y’ + 537’ (%)
z2 =03 + Qzy’ -+ o33z .

The equation of the surface in the new coordinates
z', y', z' is obtained from the equation (x) by replacing
z, ¥, 2 by ', y’', z° according to the formulas (++) and
has the form
a7t ayy"? 4 453z’ + 2a557'y" + a5y’ 4 245527 -

+ 2a12" + 2a5y" 4 20,2 4+ a;, = 0.

The function F in the new coordinates has the form

F A)__a{lx’z—f—aézy'z—i—a”z'z—i—2a{2x’y’+2a§3y’z’—I-Za{ax'z’
( - z'2 Lyt 42 i
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and is obtained by replacing z, y, z in the old expres-
sion for F by 2’, y’, 2’ also according to the formulas (x«).
The form of the denominator remains unchanged, since
it represents the square of the distance of the point 4
from the origin which is expressed in both systems in
the same way.

According to the chosen system of coordinates 2'y’z’
the minimum of the function F is reached at z’ = 0,
y' = 0, z’=1. Therefore,! if in the expression for 7 we
put z' =0, z/ =1, then we get a function of single
variable

"o azsy'?+2a35y" + a3,
f(y ) - 1_{__!/'2 ’
which reaches the minimum at y’ = 0. Consequently,
) '
A =0 for y =0.
But
df (y") o
T y,=0—2a23.

Thus, the coefficient of y’z’ in the equation of the sur-
face is equal to zero. It is shown in a similar way that
the coefficient of 2’2" is also equal to zero.

Hence, the equation of the surface in the coordinate
system z'y'z’ will be

ay’? + 2a152'y + any’? + 20,7 + 2a50y" + 20,47 +
+ @ o+ gy = 0.

If now we introduce new coordinates z”, y”, z” accord-

ing to the formulas

' = x"cos 0 4+ y” sin 0,

y = —zx"sin 0 4 y” cos 6,

7' =3z",

then, the same as in the case of the second-order curves

considered in Sec. 3-8, by appropriate choice of the angle 0

we can achieve the coefﬁclent of z"y” also equal to zero.

And so, there exists such a system of rectangular Cartesian
coordinates in which the equation of the surface has the form

a;,2% + ag y? + a3’ + 20,7 + 2ay + 2032 + a = 0. (%)
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Sec. 7-2. Quadric Surfaces Classified

As it was shown in the preceding section, by transition
to an appropriate system of coordinates the equation
of a quadric surface can be reduced to the form

apx® + a5y + azez® + 20,2 + 2a.y + 2a5z+a= 0.(x)

We shall distinguish three basic cases:
A: all the coefficients of the squares of the coordinates
in the equation () are non-zero;
B: two coefficients are non-zero, and the third one,
for instance ags, is equal to zero;
C: one coefficient, say as4, is non-zero, and two others
are equal to zero.
In Case A, by transition to a new coordinate system
according to the formulas
r__ & " & r_ is_
T=z+o-, ¥ Yyt 3 2t
which corresponds to the translation of the origin, we
reduce the equation to the form

az'® + PBy'> + yz'2 + & = 0.

Here we distinguish the following subcases:

A;: 6 = 0. The surface is a cone either imaginary if
o, P, v are of the same sign, or real if among the numbers
a, B, v there are numbers having different signs.

Ay 8§40, a, B, y are of the same sign. The surface
represents an ellipsoid either imaginary if a, B, y, 6 are
of the same sign, or real if the sign of 6 is opposite tothat
of a, B, v

Ag: %;& 0, of the fourjcoefficients a, f, y, § two coef-
ficients are of one sign, the remaining two having the
opposite sign. The surface is a hyperboloid of one sheet.

A, 8 5~ 0, one of the first-three coefficients has a sign
opposite to that of the remaining coefficients. The sur-
face is a two-sheeted hyperboloid.

In Case B by transition to new coordinates according

to the formulas

’ a !’ ‘12
¥=z+—L, y=y+-=, =z
an Qg2
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we reduce the equation of the surface to the form
azx'® + py'2 + 2pz’ + q¢ = 0.

Here we shall distinguish the following subcases:
By: p =0, g = 0. The surface decomposes into a pair of

planes
’ B r_
v =) —Fy=0

either imaginary if o and B are of the same sign, or real
if @ and B have opposite signs.

B,: p =0, gs=0. The surface represents a cylinder
either. imaginary if o, P, and g are of the same sign, or
real if there are coefficients with different signs. In
particular, if & and B are of the same sign, then we have
an elliptic cylinder, and if a and P have different signs,
then we have a hyperbolic cylinder.

B,: p 5= 0. Paraboloids. Passing over to new coordinates

” ¢ " ’

” q
=z Y=y, z =z'+-2—p,

we reduce the equation of the surface to the form
axllz + Byllz + 2pzl/ — O.

The paraboloid is elliptic if & and P are of the same sign,
and hyperbolic if o and P are of different signs.
In Case_C we pass over to new coordinates z’, y’, z’:

’ r__ r__ ag
r=x, Yy =Yy, Z—Z—{—-a—.
38

Then the equation will take the form
22+ pr 4 gy +r =0

and we may distinguish the following subcases:

Cyi: p =0, g =0. The surface decomposes into a pair
of parallel planes: imaginary if ¥ and r are of the same
sfign, orOreal if y and r have opposite signs, or coincident
ifr=0.

C,: at least one of the coefficients p or ¢ is non-zero.
Preserving the direction of the z-axis, we take the plane
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px + qy 4 r = 0 for the plane y’z’. Then the equation
will take the form
vz'? 4+ 6z’ = 0.

The surface is a parabolic cylinder.

EXERCISES
1. The curve in the zy-plane
an2* + 20,2y + agy® + 2a12 + 2a,y +a =0

represents an ellipse (hyperbola, parabola). What does
the quadric surface represent

2 =02 + a2y + aay® + 242 + 20y + @
2. Show that the quadric surface
A(ax + by + az + d)® 4 p (ae + by + oz +
-+ d2)2 =0
decomposes into a pair of planes.

3. To obtain the projection (on the zy-plane) of the
curve of intersection of the surface

a117% + @agY® + @352° + 28300y + . ..+ 04y =0 (s)

with the plane
z = ax + by + ¢,

one has_to substitute z = ax 4 by + ¢ in the equa-
tion (¥). Show this.

4. Show that- the sections of a quadric surface by
parallel planes are homothetic.

5. Show that the conical surface generated by straight
lines passing through a given point and intersecting a
second-order curve is a quadric surface.

6. Let

f($7y,z)=0, CP(x,y,Z)=0
be equations of two quadric surfaces. Show that the equa-
tion of the quadric surface passing through the point

(zg, Yo» 2o) and the intersection of two given surfaces
will be

f(x y, 2) @ (To Yor 30) — @ (5 Y5 2) [ (Toy Yo» 20) = 0.
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7. Show that the straight line specified by the equations
(@12 4 byy 412 + dy) + A (042 - By -+ 42+ 81) =0, 1
(@57 + boy +- o2 + d) +% (2% +Pay + 722+ 8;) =0, )

lies entirely on the quadric surface

(@2 + by + 1z + dy) (agx + by + oz + dy) —

— (i + Py + 11z + 8)) (2 + Boy + oz + 6,) = 0.

8. Find out what is the surface generated by straight
lines intersecting three given straight lines which are
non-parallel and do not intersect.

9. Form the equation of the surface generated by the
straight line

z2=az-1b,
z2=cy--d

} (a, b, ¢, d5=0)

rotating about the z-axis.

Sec. 7-3. The Ellipsoid
The equation of the ellipsoid is (Fig. 74)
az® + Py® + vz2 + 6 = 0.

Dividing it by 6 and putting 8/a = —a?, 6/p = —b?,
8/ = —c?, we reduce it to the form

e y? 22

T ta—1=0 ()

where a, b, ¢ are the semi-azes of the ellipsoid.

It is seen from the equation (+) that the coordinate
planes arethe planes of symmetry of the ellipsoid, and the
origin is the centre of symmetry.

Like the ellipse which is obtained from the circle
by uniform compression, any ellipsoid is generated by
uniformly compressing a sphere with respect to two mu-
tually perpendicular planes. Namely, if a is the greatest
semi-axis of the ellipsoid, then it can be obtained from

10—-0406
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the sphere

by uniformly compressing it with respect to the zy-plane
with the compression ratio c¢/a and with respect to the
zz-plane with the compression ratio b/a.

Fig. 74.

If two semi-axes of an ellipsoid are equal, for instance,
a = b, then it is called an ellipsoid of revolution.
28 y2 22
wtata—1=0

Intersecting it with any plane z = h parallel to the
zy-plane, we obtain a circle

x2+y2=(1—}2—:) a®, z=h

with centre on the z-axis. Hence, in this case the ellipsoid
is generated by revolving the ellipse

z? 22

= t+=—1=0,
contained in the az-plane about the z-axis (Fig. 75).

If all the three semi-axes are equal, then it represents
a sphere.
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The line of intersection of an ellipsoid with an arbitrary
plane is an ellipse.

Indeed, this line represents a curve of the second order.
Since this line is finile (the ellipsoid is a finite figure),
it cannot {be a ;hyperbola,
or a |parabola. Nor can it
be a |pair ,of straight lines,
and consequently it is an
ellipse. .

EXERCISES

1. 1f a <<ec, then the ellip-
soid of revolution

z2 y? 22
atata=1

represents a locus of points

the sum of whose distances

from two given points (the

foci) are constant. Find the foci of the ellipsoid.
2. Suppose we have an ellipsoid

az® + fy* + vz + 6 = 0.
Show that if the surface
ar® + Byt + v+ 8 —A @@+ y P+ 22+ u) =0

decomposes into a pair of planes, then these planes inter-
sect the ellipsoid along circles. Use this fact to justify
the method of finding circular sections of the ellipsoid.

3. Where are the points in space situated for which

Fig. 75.

] 2 2
Sttt E—1<0
4. Show that the ellipsoid

28 y? 22
atEta=1

may be specified by the equations in parametric form:

x=acosucosv, y=>bcosusinv, z = c¢sinu.
10
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5. What is the surface
(@2 4 by + 12)* + (@e% + by + c2)* +
+ (asz + bsy + c52)® = 1,
if
ay by ¢
ay by 3| £ 0?
az b3 cy

See. 7-4. Hyperboloids
Like the case of the ellipsoid, the equation of hyperbo-

loids can be reduced to the form

a2 |yl 22
FtE—a—1=0

(a hyperboloid of one sheet, Fig. 76),

22 2 22
Tt —mt+1=0
(a hyperboloid of two sheets, Fig. 77).

In both hyperboloids the coordinate planes serve as
the planes of symmetry, and the origin of coordinates as
the centre of symmetry.

If the semi-axes a and & of the hyperboloid are equal,
then it is called a Ayperboloid of revolution and is obtained
by revolving (about the z-axis) the hyperbola

22 2

——z2——1=0, y=0

ra
in the case of a hyperboloid of one sheet and the hyperbola

2 2
F——+1=0, y=0
in the case of a hyperboloid of two sheets.
A general-type hyperboloid (a@ 5= ) can be obtained
from a hyperboloid of revolution (2 = b) by uniformly
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compressing (or stretching) the latter with respect to
the zz-plane in the ratio b/a.

Hyperboloids are cut by an arbitrary plane in various
conic sections. For instance, the planes z = % parallel

A?
AZ

Fig. 76. Fig. 77.

to the zy-plane cut a hyperboloid of one sheet
2 2 2
R
in ellipses
2 y2 he
= F—a—1=0, z=h,
and the planes y = & (| & | 5= b) parallel to the xz-plane
in hyperbolas
2 2 he
2—2—%_1+—ﬁ=0, y=nh.
The plane y = b intersects the hyperboloid along two
straight lines:

2 2
x_.__zz_=o, y=b.

a? ¢
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EXERCISES

1. Find the circular sections of the hyperboloid

22 y? 22
ot —a—1=0

2. Show that through any point in space not belonging
to the coordinate planes, there pass three surfaces of the
family

=1

22 y2 22

F T E T Em
(A, the parameter): an ellipsoid, a hyperboloid of one
sheet, and a hyperboloid of two sheets.

See. 7-5. Paraboloids

The equations of paraboloids are reduced to the form

z2 y?

I=m T

(an elliptic paraboloid, Fig. 78),
z3 y2
P T

(a hyperbolic paraboloid, Fig. 79).

The zz- and yz-planesare the planes of symmetry of par-
aboloids. Their} intersection (the z-axis) is called the
azis of a paraboloid, and the intersection of its axis with
the surface is termed the verter.

If a = b an elliptic paraboloid is said to be a paraboloid
of revolution. It is formed by revolving a parabola

z2
i=Zr, y=0

about the z-axis. This is the special case of the elliptic
paraboloid in which the cross-sections perpendicular
te the axis are circles.

A general-type elliptic paraboloid can be obtained
from a paraboloid of revolution

z2 y?
T et e
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by uniforinly compressing (stretching) it with respect
to the zz-plane.

Both paraboloids (elliptic and hyperbolic) are cut by
planes parallel to the zz- and yz-planes in parabolas that

Az

Fig. 78. Fig. 79.

are parallel and equal. Indeed, the planes z = & cut
an elliptic paraboloid in parabolas

h2 o2
Z——-a—z—r—';z—, x=h.

If each of these parabolas is displaced in the direction
of z, by a line segment %%/a? then we obtain one and the
same parabola
yZ

T z=h.

Z=

Whence it follows that an elliptic paraboloid is generated

by translating a parabola z=Z—:, z = 0, with ils vertex
=, y=0 (Fig. 80).

A hyperbolic paraboloid is generated in a similar way
(Fig. 81).

moving along a parabola z =
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The planes parallel to the xy-plane, except for this
plane itself, cut an elliptic paraboloid in ellipses, and

W m

Fig. 80. Fig. 81.

a hyperbolic paraboloid in hyperbolas. The zy-plane
intersects a hyperbolic paraboloid along two straight
lines.

EXERCISES

1. Show that an elliptic paraboloid of revolution rep-
resents a locus of points equidistant from a plane and
a point (the focus). Find the focusof the elliptic parab-
oloid

2 2
z = j—z + % .
2. Show that no plane cuts an elliptic paraboloid in
hyperbolas and a hyperbolic paraboloid in ellipses.
Sec. 7-6. The Cone and Cylinders

The equation of the cone and cylinders of the second
order may be written in the form

2
%2__{. %:__-j_:-=0 (a cone, Fig. 82),

Z+ ¥ —1=0 (an elliptic cylinder, Fig. 83),

Z—:"i—:‘i=0 (a hyperbolic cylinder, Fig. 84),
x2

a_ﬂ—py=0 (a parabolic cylinder, Fig. 85).
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An arbitrary cone is obtained from a circular cone
z2 y3 22
Tt =0
by compressing (stretching) it uniformly with respect
to the zz-plane.

z

Fig."84. Fig. 85

Elliptic, hyperbolic, and parabolic cylinders intersect
the zy-plane along an ellipse, hyperbola, and parabola,
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respectively, and are generated by straight lines parallel
to the z-axis which intersect the mentioned curves.

An arbitrary elliptic cylinder is obtained from a circu-
lar cylinder by compressing (stretching) the latter uni-
formly with respect to the xz-plane.

We conclude with a note that the cone

22 y? 22

z t =0
which is called the asymptotic cone, is related with the
hyperboloids of one and two sheets

z2 2 22
R el
in a natural way.

Any plane passing through the z-axis cuts the hyper-
boloids in hyperbolas, and the cone along two elements
which are the asymptotes of these hyperbolas. In partic-
ular, the zz-plane (y = 0) cuts the hyperboloids in
hyperbolas

2 2

N Sy

a*” [4

and the cone along two straight lines
z2
“a®

which are the asymptotes of these hyperbolas.

72
— = =0,

EXERCISES
1. Show that the equation of a circular cone with the
vertex at the origin, the axis %:%:% , and the
vertex angle 2a may be written in the form
| 2
O"ITP'.U“"VZ) — (COS a)z'

(w2 y2 -+ 2%) (A2 +-p2 4 v2)
2. Show that the equation of a circular cylinder of

radius R and with the axis % == —: may be written
in the form

24 21 2 pe_ hadpy+va)?

2+ y> 422 — R2= M rpirve
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Sec. 7-7. Rectilinear Generators
on Quadric Surfaces

Cones and cylinders are not the only surfaces of the
second order containing rectilinear generators. A hyper-
boloid of one sheet and a hyperbolic paraboloid turn out
to possess this property as well.

Indeed, any straight line g, specified by the equations

z y 1 (z y
Z=)\4(7+—b—), 1=T(—“__b')1 (*)

a
lies on the hyperbolic paraboloid

z2 y2

I=—y—F (*%)

since any point (z, y, z) satisfying the equation (*) also
satisfies the equation (x+x) which is obtained from them
as a corollary by termwise multiplication.

In addition to the family g, one more family of straight
lines g is located on a hyperbolic paraboloid:

_ z y 1 z y
s=h (T—F), t=7(T+F)
Analogously: on the hyperboloid of one sheet
2 y2 2
FtE—a—1=0

there are two families of rectilinear generators

o E-oi(1=f), Tedot(ted);
d Tofor(144). Friof(-4)

In both cases (a hyperbolic paraboloid and hyperboloid
of oné sheet) rectilinear generators belonging to one family
do not intersect, whereas those belonging to different families
intersect.

The presence of rectilinear generators on the surfaces
of a hyperbolic paraboloid and a hyperboloid of one
sheet makes it possible to introduce a new method of gen-
erating these surfaces. Namely, let us take three recti-
linear generators gy, g, g3 belonging to one family.
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Then each rectilinear generator g belonging to the second
family intersects g,, g, g3 Consequently, the surface
is generated by the straight lines g which intersect the
three given lines (Fig. 86).

As to the hyperboloid of revolution of one sheet, it is
formed also by revolving any of its rectilinear generators
about the axis of the ruled surface (Fig. 87).

Fig. 86. Fig. 87.

We conclude with a note that there are rectilinear gen-
erators on other quadric surfaces, but only imaginary.
For instance, on the ellipsoid

L E _1-0
a2 b2 -

there are located two families of imaginary straight lines:

& %—}—i%:}»(i_%), %—i% T(1+l/)'
s oEeiion(ied), Toied(i-4)
EXERCISES

1. Show that the plane i’_o_V90+z+zo -0

a2
passing through the point (x4, Yo Zo) of the hyperbohc
parabolold + z = 0 intersects the paraboloid
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along two rectilinear generators belonging to two different
families.

2. Find the rectilinear generators of the hyperbolic
paraboloid z = azxy.

3. Form the equation of a surface generated by straight
lines parallel to the zy-plane and intersecting two given
skew lines.

Sec. 7-8. Diameters and Diametral Planes
of a Quadric Surface

A straight line, as a rule, intersects a quadric surface
at two points. If there are two points of intersection, then
the line segment with the end-points at the points of
intersection is called the chord.

The mid-points of parallel chords of a quadric surface lie
in a plane (termed the diametral plane).

Let us prove this. As it was shown in Sec. 7-1, there
exists a system of coordinates in which the equation of
the surface has the form

0 + gl + age?® + 20,2 + 29y + 2098 + a = 0. (¥)
Let the chords be parallel to the line = = - ==

and let z, y, z denote the coordinates of a mid-point
of an arbitrary chord. Then the coordinates of the end-
points of the chord may be written in the form z =

=z+ M, y =y+put, z =z—_—_}— vt for one end, and
2=2x—AM, y=y— ut, 2 =12 — vt for the other.
Since the end-points of the chord belong to the surface,
their coordinates satisfy the equation (). Whence
122 + Agy?® + ag2° + 2a,7 + 2a25 + 2ayz + a +
+ 2t (Aayz + H‘12217+ Vasaz_“f' Aa; + pag + vag) +
+ 12 (@ A% 4 agop?® + aggv?) = 0.

Since this equality holds irrespective of the sign taken
for ¢, the coefficient of ¢ is equal to zero:

A (au;"f' @) + p (azzy + a®) + v (assz—‘*‘ asg) = 0. (x%)
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Thus, the coordinates of the mid-points of chords satisfy
the equation of the plane which was required to be proved.

Obviously, if a surface has a centre, then the diametral
plane passes through the cenire.

In the case of the paraboloid (a33 = 0) all diametral planes
are parallel to its axis (to the z-axis).

An elliptic (hyperbolic) cylinder has an infinite number
of centres situated on its axis. Therefore, each diametral
plane of the cylinder passes through its axis. This circum-
stance 1is reflected in the equation of diametral planes.
In the case of a parabolic cylinder all diametral planes
are parallel.

The diametral planes of the cone pass throughlits vertex.

Diametral planes possess the following general proper-
ty: the diametral planes corresponding to the chords par-
allel to the plane o. either intersect along a straight lire g,
or are parallel. The diametral plane corresponding to the
chords parallel to g is parallel to a.

Let us prove this. Let e (A, p, v) and e (A", p’, v')
be non-zero, non-parallel vectors in the plane «. Then
any vector/contained in this plane may be represented
in the form e (EA + E'A", Eu + E'n’', Ev 4+ E'v'). The
diametral plane corresponding to the chords parallel
to the vector ey will be

E{A (ax +ayg) + p(agy + ag) +v (assz +a3)} +
+ & {M (a2 + ay) + p' (ay +-as) + V' (assz+ag)} =0

and, consequently, for any &, &' passes through the line
of intersection of the planes
A (@33 4 ag) + P (ag2y + @3) 4V (@337 +ag) =0, } (ore)
N (@ -+ ag) + 1 (@l +a5) + V' (@552 + az) =0,
if they intersect, and is parallel to them if the planes

are parallel. Suppose the planes (*x+) intersecl and
(A", p", v") is a vector parallel to the line of inter-

section. Then
A'hay + ppag, + v'vagy = 0,]
xﬂxlall + }L"M'(Lu + ‘V"V'a33 — 0

(rtx)
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(parallelism of the vector (A", p”, v") to the planes (x++)).
The diametral plane corresponding to the chords parallel
to the vector (A", pn”, v”) will be

A7 (ayx + ap) + p” (@ey + ap) + v" (ag3z + az) = 0.

From the conditions (****) it follows that this plane
is parallel to the vector e (A, p, v), ¢ (A, p’, v') and,
consequently, is parallel to the plane a which contains
them.



Chapter 8

Investigating Quadric Curves
and Surfaces Specified
by Equations of the General Form

Sec. 8-1. Transformation of the Quadratic Form
to New Variables

The quadratic form of variables z;, z,, ..., z, is de-
fined as a homogeneous polynomial- of the second degree
with respect to these variables

)
Z,‘aijxixj (aij=aﬁ).
1,7

The discriminant of a quadratic form is defined as a de-
terminant formed from its coefficients:

Ayy Qg -.. Qyp

D—=|%1 G2 - G2
Qny Gpp ++- Qpp

Let us replace the variables in the quadratic form ac-
cording to the formulas

Ty = Qg% + ATy + .« - - -0y Zn,

’ ’ "
xZ = azixl + azzxg + LI + a2n‘z‘n7
Ip = a’nix; + anzxz + . + annx;t'

This yields a quadratic form with respect to the variables
z;. Namely:

12] Q% x; = ;; a5 (; Ctthxz’._) (zl] a,-zxi) =

=D (2 Q3j0ptLj1) THTT = D) A THE,
Al ohs El
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where
, N
ap = 2_ a;iQipQjie
1,

Let us find out what the discriminant D’ of the obtained
form equals to. Put

"
21 @Oy = bjn. (#)
1
Then
ap'u = z bjhajl
7

and, consequently,

ay ayp by « - Dy | |Q4g - ok @p
D= - S R
Gny . Aoy Bug v bpn|1Gnt v+ Qpn
But according to the formulas (+)
byg - byy ayy c Qi | | Rqg -0 Qg
bni . bnn Qnq Ann Qp1 + Apn
Thus,
12271 - Qyy
D=DI|- ... ,
Apg + -+ App

i.e. the discriminant of the transformed form is equal to the
discriminant of the initial form multiplied by the square
of the determinant of transformation coefficients.
EXERCISES
1. Show that the discriminant of the quadratic form
(@12 + gy + asts + a,24) (012 + baZs + bs2s + buTy)
is equal to zero.

2. Compute the discriminant of the quadratic form of
the variables z;, z,, %3, T,

(; az;)" + (21] bix;)* + (Z c,z;)* +(Zd ;)%

11-0406
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Sec. 8-2. Invariants of the Equations
of Quadric Curves and Surfaces
with Reference to Transformation of Coordinates

Suppose we have an equation of a quadric surface
137 + 20,02y + . . .+ aa =0 (%)
in a system of rectangular Cartesian coordinates. The
equation of this surface in any other system of rectangular
Cartesian coordinates z'y’z’ is obtained from the equa-
tion (z) if instead of z, y, z we substitute their expres-
sions in terms of z’, y’, ' according to the formulas
introduced in Sec. 5-4:

T =y’ + oy + sz’ Hoy,
Y = 0’ + Qg + Q37 + 0y,
z = g + gy + @gsz + s
The equation of the surface in the new coordinate system
will be
ax2'?+ 20,2y + ...+ a;y = 0.

The function ¢ (a4, Gy4, - - -, G44), Which is not a
constant is called the invariant of the equation of the sur-
face with reference to the transformation of the coor-
dinates if its values are independent of the coordinate
system to which the surface is referred, i.e. if

P (aﬂy Ag2q + - -y a%) = (p(al’p a;zv M) a;4)’

U

whatever the system of coordinates z'y’z" is.

Now we are going to find one of the basic invariants of
the equation of the surface.

Along with transition to the new coordinate system
2'y’s’, we shall consider the transformation of the quad-

ratic form
2 2 2
a41 23 + Q9025 + ATy + 20158175 + 200373 + 2051 TyTy —
2 2 2
—A (] + 22+ 23)
to new variables zi, z;, z, according to the formulas
Zy= 04Ty + QoT, + Aygs,
Ty = Ugy Ty + Qga®y + UgsTs, ()
’ 4 ’
Z3= o3y Tj + 0U3aT, + U3z Zs.
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As a result of this transformation the first part of the
quadratic form, up to the term A (z} 4 2} + z3), will
take the form

437" + @g025° + ag + 201,217, + 20,72+ 205, 7,7,
and the coefficients a;; will be the same as in the equation
of the surface after the transition to the coordinate system
z', y', 5’. As far as the term A (2} + z} + z3) is con-
cerned, it will be transformed into A (z;2 + z,2 + z.2)
by virtue of the orthogonality conditions which are satis-
fied by the coefficients a;; (see Sec. 5-4).

Since the determinant of transformation coefficients (xx)
is equal to =4=1, the discriminants of the quadratic forms
before and after the transformation are equal. Conse-
quently,

ay—h ay Q43
I (A) =@y Ags— M as;
asy a3y ag3—M

is an invariant of the equation of the surface for any A.
The determinant I (A) represents a polynomial with
respect to A:

T () = —A3 + 02, — AL, + I,

where
I, = ay; + agy + ags,
I a4y Gy gy Qo3 a3z Ay
T Q31 G Q3 Qs Ay Ay |’

@y Qg2 Qg3
Ig=|8z Ggp Qg3
a3 Q3 A33
Since for two different coordinate systems xyz and

LA

2'y'z
— M+ TN —T A4 Ty= — AN+ I A2 —T AT
for all A, then I, =1I;, I, =1,, I = I, and, conse-

quently, I,, I,, I; are invarianis of the equation of the
surface.

i1*
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Let us now show that
Ayq Ay Qg3 Qg
I Aoy Qgp Qg Qg
4=
gy Qg A3z QAgg
Qpy Ay iz Ay
is also an invariant.
The determinant I, represents the discriminant of the
quadratic form

a14&; + 20452473 + -+ . QW7
Let us pass over to new variables z; using the formulas
Ty = 0y Ty + AgpZy + UyaZ5 -+ gy Ty, |
Ty = Qi Ty =+ Ao, + Rpsy +- oy %y
Tg™= g1 ] -+ A3y, | Q3sTs - AguZy,
z,=0.2; +0.2;, +0-2; +1.2,.
As a result we obtain the form

(rx)

ayal+2a,z2, 4 . ag,x?,
where aj; are the same as in the transformed equation
of the surface.

Since the determinant of transformation coefficients
(#++) equal to the determinant of transformation coef-
ficients (++) is equal¥to -1, the discriminants of the
initial and transformed forms are equal, i.e.

’ ’
Gyq - Gy a;; ... ag,

. . DR o

b
au...a“ a“...a“
and the determinant 7, is really an invariant of the equa-
tion of the surface.

Reasoning just in the same way, we obtain the invariants

ayy—h ayy
I(\N)= I,=a a
) sy agy—n|" 11+ Az,
de @ ayy Qg3 Q43
1 Qg
Iy= ) Is=|a3 a5 a3
Ay Gy

a3y Qgy A3
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for the equation of a quadric curve
03,7 + 20557y + @g0y® + 20157 + 2a55Y + ags =0

with reference to the transformation of coordinates.

EXERCISES
1. Compute the invariants of the equation of a surface
az® + 2bxy + cy?® + 2az + 2By + 2yz2 + 6 = 0.
2. Compute the invariants of the equation of a surface
22+ y® -+ 22 — k2 (az + by + ¢2)? = 0.

Sec. 8-3. Investigating a Quadric Curve
by  Its Equation in Arbitrary Coordinates

Let there be given a quadric curve in arbitrary Carte-
sian coordinates zyz:

a1 + 2ay51y + agel® + 28,37 + 2855y + a3z = 0.

As we showed in Sec. 3-8, by transition to a new coordi-
nate system, the equation of a curve may be reduced
to the form

ax® + By + ax + by + ¢ = 0.

Without finding the coordinate system itself, we can
simply find the coefficients @ and f by means of the
invariant 7 (A). Indeed,

a—A 0
0 B—>%
Whence it is seen that o and f are the roots of the

equation 7 (M) = 0, i.e. of the equation

A —TIA4+T,=0.

Suppose both roots are non-zero (it will happen if
I, 0). Then, as it was shown in the¥same Sec. 3-8,
the equation of the curve can be reduced to the form

az® + By + v =0
by translating the coordinate system.

ay—h ag

|=I(x).

gy Qg —A
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It is not difficult to find the coefficient yusing the invari-
ant I; We have

a 00 Q41 Q3 Aayg
0B O)l=1I,={ay ay ay|.
0 0 vy a3y Qg ag
Whence
I _Is
T Al T L

Thus, if I, 50, then the equation of the curve in an
appropriate system of coordinates will take the form

x1x2+x2y2+-§§ —0,

where Ay and A, are the roots of the equation
ay—>XA ay ‘=0

(271 Qs — M

Let us now assume that one of the roots of the equation
I (M) =0 is equal to zero (it will happen if 7, = 0).
Then one of the coefficients either a, or B is equal to
zero; for definiteness let a=0. In this case (see Sec. 3-8)
the curve is specified either by

By® + 2yz =0

ﬁyz +6=0,
namely by the first equation if 7; =~ 0, and by the second
equation if I; = 0.
Let I35~ 0 and, consequently, the curve is specified
by the equation

or by

By* + 2yz = 0.
From the equation
M—ITA+T,=0

with 7, = 0 we find § = Iy; y is found using the in-
variant I,. Namely:

00 v

0B O0|=1I,.

y 00
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Whence

I 1
Thus, if I, = 0, Iy 5= 0 the curve in the corresponding
coordinates is specified by the equation

I1y2—|—2:v]/—-§—:=

Let us finally consider the case when [, = I; = 0.
We change the coefficients of the equation by small
quantities &;;. We may deal with g;; in such a way that
I, will become non-zero and the equation of the curve
can be reduced to the form

Dg® + Mgy + %:- —0. (%)

And now let us proceed to the limit as &;; tend to zero.
Then the equation (x) will turn into the canonical equa-
tion of the original curve.

Example. Let I, = 0, I3 = 0, a,, = 0. We put &;; =
= t, and all the remaining &;; equal to zero. Then, pro-
ceeding to the limit in the equation (x), we get

Q3 Qa3
235 Qg
Caa

I1$2+ =0.

We conclude with the following note: the vanishing
of the invariant I, is a necessary and sufficient condition
for decomposing a quadric curve into a pair of straight
lines. To be convinced of this it is sufficient to compute
I, for the canonical forms of equations of curves.

EXERCISES

1. What condition must be satisfied by A for the quad-
ric curve
(ap® 4 2a100y + . . . + agg) +
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to decompose into a pair of straight lines? Show that the
lines into which this curve decomposes pass through the
points of intersection of the curves
anx® + 2a,92y + . . . + azy = 0,
by 2® + 2byazy + .. . + bgy = 0.
2. The biquadratic equation
aort + a,2® + a2 + azx + a4 = 0
is equivalent to the system
ay® + azy + a2 + agr + a, =0, y— 22 = 0.

Reduce the solution of the biquadratic equation to solving
a cubic and a quadratic equations (see Exercise 1).

3. The equation of a hyperbola referred to the centre
and one of its asymptotes has the form

y=oazr+ % .

Express o and f in terms of the coefficients of the equa-
tion of this hyperbola in arbitrary coordinates.

4. 1f equal, mutually perpendicular diameters of an
ellipse are taken for the coordinate axes, then its equation
will take the form

22 4+ y? + 2azy + 6 = 0.

Find o and § given the equation of the ellipse in arbitrary
coordinates.

Sec. 8-4. Investigating
a Quadric Surface Specified
by an Equation in Arbitrary Coordinates

Let a quadric surface be specified by an equation in
an arbitrary system of rectangular coordinates zyz:

a2 + 20552y + . . .+ age = 0.

As is shown in Sec. 7-1, by transition to a new system
of coordinates, the equation of a surface can be reduced
to the form

ox® + Py* + y2* +ax 4+ by + ez + d = 0,
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Using the invariant I (A), we get

a—A O 0
IM=| 0 PB—A 0
0 0 y—2

= —7\‘3+Ii7\’2_‘[27\’+‘[3'

Thus, a«, B, ¥ are the roots of the equation I (A) = 0.

Suppose all the roots are non-zero (I3 5= 0). In this case,
as is known from Sec. 7-1, by transition {0 new coordi-
nates the equation is reduced to the form

az? + By® + yz* + § = 0.

We find the coefficient & wusing the invariant I,.
Namely:

Whence
do 1L
aby ™ I3 -
Thus, if I, 5= 0 then by transition to a new coordinate
system, the equation is reduced to the form

§—

M2 hoy? + Rz T4 =0,
3

where A,, A,, Ag are the roots of the equation 7 (A) = 0.

Let us now assume that one of the roots of the equation
I (A) = 0 is equal to zero, the two others being different
from zero. This will happen if I; = 0, but /, 5= 0. Then,
by transition to new coordinates (see Sec. 7-1), the equa-
Eion of the surface is reduced to one of the following
orms .

az® + Py? + 2pz = 0,
az? + Py + & = 0.

The first of them corresponds to the case I = 0, and
the second to the case I, = 0.
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In the first case the coefficient p is found from the
invariant 71,:

and the equatio

In the case I, = 0 we change the coefficients of the
equation by the quantities &;; so that /3 ==0. Then,
by transition to an appropriate system of coordinates,
the equation is reduced to the form

M@+ Aoy Dgz? o+ T2 =0,
3

Proceeding now to the limit as &;; tends to zero, we obtain

the canonical form of the equation of our surface.
Example. Let I; =1, =0, hut

Gy Gy

=+ 0.

Qyy  Ogp
We put eg3 = ¢, and the remaining e;; equal to zero.
Then

11 Qyp d1g

Qp1 Qgp QGz4

I4(2) 18 24 844
I3 (2) a4 @
Q31 Qg

The canonical form of the equation of the surface will be

@11 aip Q14

Qg1 g3 Qgg

Q41 G439 Q44
ayy aps i

Dog2® 4 Agy? —0.

Qg1 G2
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Finally, when two roots of the equation I (A) = O are
equal to zero, the equation of the surface is reduced to
one of the forms:

az® + 2pz =0 or az® + 6 =0.
The coefficients p and § are found by varying the coeffi-

cients of the equation of the surface as in the preceding
case.

EXERCISES

1. Find the canonical form of the equation of a surface
(ax + by + ez + d) (ayx +b, y + ¢4z + dy) = 0.

2. Show that if I, = 0, then the surface represents
either a cone, or a cylinder, or decomposes into a pair

of planes.
3. Show that if I, =0 and I; = 0, then the surface
decomposes into a pair of planes.

Sec. 8-5. Diameters of a Curve,
Diametral Planes of a Surface.
The Centre of a Curve and a Surface

Let a quadric surface be specified by an equation in
an arbitrary system of rectangular Cartesian coordinates

an.’llz + 2a12$y + “ e + (144 = 0. (*)

For the sake of brevity we introduce the following
notation:

2F = ap2® + 2a450y + . o o + Gyqs
Fy= a3x + 13y + G132 + 14,
Fy = anz -+ @yl + a3 + a4,
F, = agx + asy + a3s2 + g4

We already know (from Sec. 7-8) that the mid-points
of the chords of a given direction A : p : v, i.e. of those
parallel to the line

x
n

=Y -2
==
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lie in the diametral plane. Form its equation if the surface
is specified by the equation (*).

Let (z, y, z) belthe mid-point of an arbitrary chord.
The coordinates of the end-points may be written in
the form

zy=zxz+ A, y =Y+ pt, 3z =z-+ vi,
Zo =2 — M, Ys=1y — nt, z5=2—vi.

Substituting these coordinates into the equation of
the surface, we get

2F (z, y, 2) &= 2t AFx (2, ¥, 2) + wFy (2, ¥, 2) +
+ VF, (z, ¥, 2))+ 1 (aA® + agop® 4 azgv? +
+ 2a5,M + 2a53pv + 2a3,vA) = 0.

It follows from this equation that the coefficient of ¢
must be equal to zero:

Ay + uF, 4+ vF, = 0. ()

This is the equation of the diametral plane corresponding
to the chords of the given direction A :

If a surface has a centre, then each of the diametral
planes passes through the centre. Consequently, the
centre of a surface is determined from the equations

F, =0, Fy=0, F,=0. (oe)

Quadric curves are considered just in an analogous
way. Here is the final result.
Suppose a curve is specified by the equation

20 = a1,2* + 28,97y + a30Y® + 2,57 + 2a,3y + agzz=0.
We put

D, = apz + 419y + a3,

Dy = anz + agy + ags

Then the diameter corresponding 1o the chords of the direc-
tion A : p, i.e. to those parallel to the straight line

z Y

T
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is specified by the equation
AD, + pd, = 0.

The centre of the curve (if any) is determined from the
system of equations

EXERCISES

1. Show that if the origin is translated into the centre
of the quadric curve

an® 4+ 2a;57y + agoy® + 20157 + 2a45y + agz = 0,
then its equation will take the form

a4,72 -+ 2a4,xY -+ ay0y2 + -‘;—" =0.
2

2. Show that if the origin is translated into the centre
of the quadric surface

Ay 2% + 2a00y + .. .+ a =0,
then the equation of the surface will take the form

I
A4 T2+ Agoy? + Ag922 + 2045,2Y + 2049343+ 204,22 + 7:— =0.

Sec. 8-6. Axes of Symmetry of a Curve.
Planes of Symmetry of a Surface

Let us determine the planes of symmeiry of a surface spe-
cified by an equation in arbitrary coordinates.

Suppose A : u : v is the direction perpendicular to the
plane of symmetry. Since the mid-points of the chords
of the direction A : p : v lie in the plane of symmetry,
the latter is specified by the equation

AP, + pF54 v, = 0. *)
Since the direction A : p :v is perpendicular to the
plane (#), then
anhtap—+ agev . aa1h = agolh + aggv .
Iy - B -
— aalk‘}'asvz}‘«-f-ass\’ . (%)
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Finding A : p : v from this system of equations and sub-
stituting it into the equation (), we get the equation of
the plane of symmetry of the given surface.

To simplify the finding of A : p : v from the system
(#+), let us denote by E the common value of the three
ratios (*x). We then get an equivalent system

(@u—8 M+ apntauv=0,
Ageh (@5 — &) b+ a95v =0, (#%)
aggh+ agp + (ag3— &) v=0.

Since A, p, v are not equal to zero, we get

a3 —& ay ay3
Qa4 Ay —§ Qs |=1(§)=0.
gy asy  aAp—E

Whence we determine & and substitute it into the sys-
tem («#+) to find A :p :v.

Knowing how to find the planes of symmetry of a sur-
face, it is not difficult to find the coordinate system in
which the equation of the surface has the canonical
form.

Let us give an example.

Suppose that as a result of investigation of invariants
of a surface the latter turned out to be an ellipsoid. Then
its canonical equation will be

Ay 22 + hoy? 4 hgz2 4+ —% =0.

We see that the coordinate planes are the planes of sym-
metry of the surface.

If the roots &, &,, &, of the equation I (§) = 0 are
all different, then these planes are defined uniquely by
the above mentioned method. But if there are equal
roots among them, then this method yields no unique
solution (the case of a surface of revolution), and to the
requirement that the coordinate planes must be the
planes of symmetry the condition of perpendicularity
should be added.

Let us consider one more example. Suppose the surface
is a hyperbolic paraboloid. In this case there are two
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and only two planes of symmetry. They are the coordi-
nate axes. The origin is located at the point of inter-
section of the axis of the hyperboloid (the line of inter-
section of the planes of symmetry) with the surface.

A similar investigation of quadric curves results in
the following:

The axes of'symmetry of a quadric curve are specified
by the equations

AD, 4 pd, =0
From the system
(a1, — &) A + ap =0,
anh + (@z; — & p =0,

where § is the root of the equation 7 (§) = 0, we deter-
mine A : p.

The system of coordinates in which the equation of
the curve takes the canonical form is determined from
the considerations analogous to those used for surfaces.

EXERCISES

1. Find the axis of the circular cone z? -+ y® 4+ 22 —
— (az +by + cz)? = 0.

2. Find the vertex and the axis of the parabola (az +
+by+c)+ax+ Py + y=0.

Sec. 8-7. The Asymptotes of a Hyperbola.
The Asymptotic Cone of a Hyperboloid

Suppose a hyperbola is specified by an equation in
arbitrary coordinates

20 = ap®® + 2ay07y + asel® +

+ 24137 + 2a55y + ags = 0. (%)
Let us find the equation of its asymptotes, for which
purpose we pass over to a new system of coordinates z'y’

in which the equation of the hyperbola has the canonical

form:
20" =z 4 Py'2 + vy = 0.
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As we know (from sec 3-4), in this system of coordinates
both asymptotes are specified by the equation

az'? + py’'? =0, ie 20 —y =0

If we now come back to the coordinates zy, then for the
hyperbola we shall obtain once again the equation (),
and consequently the equation- 2@ — y = 0 for its
asymptotes.

The constant 7y, as is known from Sec. 8-3, is equal
to I4/I,. Hence, the equation of the asymptotes of a hyper-
bola specified by an equation in the general form will be

I
20 —-=0.

2

Reasoning just in the same way when considering a
hyperboloid (of one or two sheets)

2F = a11x2+ 2012$y+ P + a44 == 0,

we find the equation of its asymptotic cone

I,
2F — T, =0.
EXERCISES

1. Find the asymptotes of the hyperbola (ax 4+ by +
-+ ¢) (@z + by + ¢;) = const.

2. Find the asymptotes of the hyperbola A (azx -+ by -+
+ )+ p (@@ + by + ) = v, Ap <O.

Sec. 8-8. A Tangent Line to a Curve.
A Tangent Plane to a Surface

Let a quadric curve be specified by an equation of the
general form

2CD = a11x2 + 2a12xy + PR + a33 = 0.

Let us form the equation of ils tangent line at ‘an arbi-
trary point A, (¢ Yo)-

A tangent line to a curve is defined as the limit of a se-
cant g when the point K infinitely approaches A4,
(Fig. 88).
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Let A (z, y) be an arbitrary point on the tangent line.
We denote by 4’ (z', y’) the point of the secant nearest
to A. Obviously, when K — 4, A" — A.

"The coordinates of the point K in terms ofgthe coordi-
nates of A, and A" may be written in the form

Tp = Zo + t(x' — Zo),
Yk = Yo+ Lt (¥ — yo)-

Substituting the coordinates of the point K into the
equation of the curve, we get

20 |y = 2 Dy, + 2t {(z' — z¢) Dy |4, +
+ (' — yo) Oy la) + £ {ay @ — x)2 +
+ 2a50 (&' — 20) (¥ — Yo) + @92 (¥ — ¥’} =0,

where the subscript 4, indicates that the coordinates of
the point A4, should be taken as z and y. Since the point

«Q

Fig. 88. Fig. 89.

A, lies on the curve, ® |, = 0. Therefore the equation
may be reduced by 7. We obtain

2(z" — xg) Dy (zgy Yo) +2 (¥ — Yo) Dy (x4, Yo) +
+t{ay (@ — 20)® + 2a;, (& — z,) (' — Yo) +
+ ase (¥ — yo)*} = 0.

Let now K —A, Then t -0, and 4" -4 (ie.
z —z, y —y), and we get

(& — zo) D (x4, Yo) + U — ¥o) Dy, (x4, yo) = 0. (%)
12-0406
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This equationg isf linear with respect to z and y, and
therefore this is an equation of a straight line. An arbit-
rary point A; of the tangent line satisfies it. Hence, this
is the equation of the tangent line.

A tlangent plane to a surface at point A, is defined as
the plane containing the tangent lines to all the curves on
the surface emanating from 4, (Fig. 89). The equation
of the tangent plane to a
quadric surface at point
Ay (Zgy Yoo 30) Will be:

2F = a, 2% + 2a,0y +

+ ...+ au =0.

Draw an arbitrary plane

o through the point 4, 1t

Fig. 90. will cut the surface in a quad-

ric curve kg. Draw a line

tangent to the curve %, at point A, and denote by
A (z, y, z) an arbitrary point on this tangent (Fig. 90).

Take a point K on /%, close to 4,, and draw a secant g
through the points 4 and K. Let A’ (z, y’, z") be the
point on the secant nearest to A. Obviously, if K —A4,,
then A" —A4. : '

The coordinates of the point X in terms of coordinates
of A, and 4’ may be expressed in the form zx = z, +
-+ t()x' —Zo), Yk = Yo+t Y — Vo), 2x =20+ ¢ (2 —
— Zg).

Slgbstituting the coordinates of K into the equation
of the surface, we get

2F |a, + 2t{(@’ — x0) Fx la, + @ — o) Fy la, +
+ @ —z0) F, lay + 2 {an (@ — 24 +
+ 2ay5 (@' — o) W' — Yo) + ...} =0. ()

But 2F |,, = 0, since the point A, is situated on the
surface. Dividing the equation («*) by ¢ and proceeding
to the limit as K tends to 4,, we obtain

(x— @) F | a0+ (¥ —Yo) Fy 1, +(2—20) F |4, =0.

This equation is linear with respect to z, y, z and
therefore specifies a plane. Since it is satisfied by the




Ch. 8. Investigating Quadric Curves and Surfaces 179

coordinates of any point 4 on the tangent &, at point A4,
whatever o is, il represents the equation of a tangent
plane to a surface at point A,.

EXERCISES

1. Show that a tangentffplane to a quadric surface at
point P is parallel to the diametral plane corresponding
to the chovds parallel to the diameter passing through P.

2. Let 20 = a2 + 2a42y + ... + a3 =0 be a
quadric curve, and 4, (z,, y,) @ point outside this curve.
Draw an arbitrary line g through 4, Let 4 (z, y) be an
arbitrary point on this line. The coordinates of any point
B of the line g may be represented in the form

Zp = Tg+ t (& — 29)y Yp="Yo+ t U — Yo)-
The values of the parameter ¢ corresponding to the points

B, and B, of intersection of the curve 2 = 0 with the
line g are found from the quadric equation

20 (zo + t (@ — @), Yo+ t(y —Yo) = 0. (##)
When the line g approaches the tangeunt, the roots of the
equation (+++) merge. Taking} into consideration this
fact, form the ,equation of the pair of tangent lines to a
quadric curve emanating from the point 4,.

3. Form the equation of a cone with the vertex 4, (z,,
Yo» o) touching the quadric surface 2F = 0.

4. Form the equation of a cylinder with the axis parallel
to the straight line

z/A = y/p = z/v.
The cylinder is circumscribed about the quadric surface
2F = 0.

5. Show that the tangent plane to a hyperholoid of one
sheet and to a hyperbolic paraboloid intersects the surface
along two straight lines.

6. Show that the confocal quadric surfaces

22 y2 22
a4+ A + b2 A + 22 =1,
passing through point (z,, y,, 2,) intersect at this point
at right angles. It is assumed that the point does nol lie
in any of the coordinate planes.

12%



Chapter 9

Linear Transformations

Sec. 9-1. Orthogonal Transformations

Suppose an arbitrary figure F is carried into a figure F’
by motion, or by motion and mirror reflection. Then the
figure F' is said to be obtained from F by an orthogonal
transformation. Obviously, the orthogoral transformation

Fig. 91,

of a figure leaves the distances
belween its points unchanged.

Let us find the formulas
which establish the relation-
ship between the coordinates
of an arbitrary point 4 (z, y, 2)
of the figure /' and the corre-
sponding point A’ (z', ¥, 2')
of the figure F'.

Let us imagine that the
coordinate system s (z, y, 2)
is rigidly connected with the
figure . Then, as a result of

an orthogonal transformation, it will go into a system
of coordinates s’ with reference to which the coordinates
of the point 4’ will be z, y, z (Fig. 91). Thus, the prob-
lem consists in that we have to express the coordinates
of the point 4’ in the coordinate system s if its coordinates
in the system s’ are known.

As is known (from Sec. 5-4), the relationship between
the coordinates of a point with reference to two systems
of rectangular Cartesian coordinates is established by

the formulas

7' = ayx+ oy + ay32+ag,
Y = AT+ gy - Aga% + Az, (*)
2 = a3y T + agY + Gg52 + Ay,
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whose coefficients satisfy the following conditions

2 2 2
ay+aytag =1, aya;,+ 005+ a54a3,=0
2 2 2
i+ a3, =1, Q438454030853+ 39033 =0, (+%)
2
al,tay, 4 al; =1, 3045} 05385, 4 ag3a5,=0.

Hence, taking into consideration all this, we come to
a conclusion that any orthogonal transformation is speci-
fied by the formulas (¥) whose coefficients satisfy the con-
ditions (¥%).

Let us show the converse that any transformation spec-
ified by’ the formulas (x) under the conditions (s+) is an
orthogonal transformation, i.e. the transformed figure is
obtained from the given one by motion, or by motion
and mirror reflection.

Let 4, (3, ¥1, 2z1) and 4, (z,, Y2, Z5) be two arbitrary
points of the figure F, and A4, (z}, y;, 2;) and 4, (z;, y,, 2,)
the corresponding points of the figure F’. The square of
the distance between the points A; and A, is equal to

(2 — 2,2+ (y; —y3)2 + (2, — 2,)2.

Substituting the expressions'for'z;, «;, y;, ¥, 2, 2, accord-
ing” to  the formulas (), and taking advantage of the
conditions (++), we get

(2, — z)? + (Y, — ye)! + (31 — z,)%

Hence, the distance between any two points of the
figure F is equal to the distance between the correspond-
ing points of the figure F’. Consequently, F is congruent
to F’, and F’ is obtained from F by motion, or by motion
and mirror reflection.

Orthogonal transformations possess the following geo-
metrically obvious properties’ which, however, may he
verified with the aid of the formulas (+):

1. The successive application of two orthogonal transfor-
mations is an orthogonal transformation once again, i.e.
if figure F’ is obtained by an orthogonal transformation
from F, and figure F” by an orthogonal transformation
from F’, then F” is obtained by an orthogonal transfor-
mation from F.
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2. The inverse of an orthogonal transformation is itself
an orthogonal transformation, i.e. if F’ is obtained by an
orthogonal transformation from F, then F is obtained
by an orthogonal transformation from F’.

3. An identity transformation, i.e. the iransformation
specified by the formulas

2=z y =y, 7=z,
is an orthogonal transformation.
Orthogonal transformations in the plane are defined
similarly. They possess analogous properties and are spec-
ified by the formulas

7
T = anx + aY + s

4

Y = 05T + ag9Y + Qg3

whose coefficients satisfy the following conditions
a121 + a’gi = 11
aj,+a3, =1,

Since the formulas for transforming rectangular Carte-
sian coordinates (see Sec. 2-7) coincide with the formulas
of orthogonal transformations, then from the results of
Sec. 3-8 concerning the reduction of the equations of
quadriclcurves to the canonical form, it follows that any
quadric curve can be transformed by an orthogonal trans-
formation into a curve of one of the following types

az? + By* + v =0,

44045 + A54a5,=0.

az® + fy* =0,
az® + 2py = 0,
oz’ + q = 0’
x> = 0.
EXERCISES

1. Form the formulas of the orthogonal transformation
which carries the plane ay (yz, az) into itself, and the
plane zy into the plane zz (yz).
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2. Form the formulas of the orthogonal transformation
which leaves the origin in its place and brings the z-axis
into the straight line

r_yv
TR

Sec. 9-2. Affine Transformations

Orthogonal transformations are a particular case of
more general transformations of figures, the so-called
affine transformations. The latter are specified by the
formulas

' =a4x+ Y+ a2+ ay,
7

Y =y T+ Aol + 932 + Ay, (%)
’

Z =0a3 T+ agY + Q3321+ Ay,

where the coefficients a;; are any real numbers satisfying
the only condition

agy Q43 Q43
A=|ay az as5|7%=0. (%+)

a3 Qzz Qg3

Obviously, this definition is invariant with respect to the
coordinate system chosen, since the coordinates of a point
in one coordinate system are expressed linearly in terms
of its coordinates in any other system of coordinates.

Affine transformations possess the following properties
which are easily checked:

1. The successive application of two affine transformations
is an affine transformation.

2. The inverse of an affine transformation is also an affine
transformation.

3. The identity transformation is affine.

All these properties are easily verified with the aid of
the formulas (). Let us, for instance, check the second
property.
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Solving the system of equations (+) with respect to
x, Y, 2z (the determinant of the system is non-zero), we get

’ 14 ’ ’ ’ ’ ’
T=ayx +a,y + a,y2 1 ay,,
. (4 ’ ’ ’ 7 ’
Y=y +ayy +a,2 +a,, (#)
’ ’ 7 ’
3=ayu® 4 a,y’ + a2’ + ay,

where aj; (for i, j < 3) represent the reduced algebraic
cofactors of the elements a;; in A. As is known, the deter-
minant A’ formed from ai; is equal to A~! = 0. Whence
it follows that the transformation associating the point
(x, y, z) with the point (', y’, z’) according to the
formulas (»xx), i.e. the transformation inverse to the
affine one () is affine.}

We conclude with an important note that an affine
transformation is defined uniquely if there given the images
of four poinis not lying in one plane. Indeed, substituting
the coordinates of the given four points and their images
into the first of the equations (x), we get

Ty = ap®y + ol + 01375 + G,
Ty = ApZ%y + Gy9Ys + 04325 + Gy,
Ty = ap%s + ay5Ys + @323 + a1y
%, = an%T4 + QyoYs + 81324 F Gy
These equalities may be considered as a system of
equations with respect to ajy, @y, @3, ay4. The determi-
nant of the system
zy Yy 2 1
Ty Yol 22 1
3 ys 25 1
T, Yo % 1
is equal (by absolute value) to six times the volume of a
tetrahedron with the vertices at the given four points
and, consequently, is non-zero. Hence, the quantities
Gyy, Oygy Gy3, Gy4 aTe defined uniquely from this system.

It is proved in a similar way that the coefficients of two
other formulas () are also defined uniquely.

To—Ty Ys—Y1 22— 2
=—|Z3—Ty Ys3—Y) Z23—72
L=y Ya—Y1 2,—2
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An affine transformation in the plane is defined uniquely
if there are given the images of three points not lying on a
straight line.

EXERCISES

1. Derive the formulas of the affine transformation
which carries the points (0, 0, 0), (1, 0, 0), (0, 1, 0),
(0, 0, 1) into the points (2, Y1, 2,), X3y Y31 Z2)s (X3, Y3 23),
(T4, Ya> Z4)-

2. Derive the formulas of the affine transformation
in the plane transferring the coordinate axes z and y

into the two given lines
az+by+c¢c=0, az+ byy+ ¢ =0.

Sec. 9-3. The Affine Transformation
of a Straight Line and a Plane

From the single-valued solvability of the formulas
of the affine transformation

= an® + Gy + a3 + yy,
Y= ayT + QoY + Ga32 + agy,
2\ = ag % + agsl + a3s% + Gy,
Qg Gz Oy3
A=|az azp as|70. (%)
a3y Q32 A3z
with respect to z, y, and z it follows that the affine trans-
formation carries different points into different points, and
that any point (z', y', z') is an image of some point (z, y, z).
Let us prove that the affine transformation carries a
plane into a plane, a straight line into a straight line,

preserving parallelism.
Suppose ¢ is an arbitrary plane and

axr -+ by +-cz+ d =0 (++)
is its equation. Under the affine transformation }(x)

the plane o goes into some figure ¢’. Since the coordinates
of each point of ¢ satisfy the equation (++) and are lin-
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early expressed in terms of the coordinates of the corre-
sponding point of the figure o', then the coordinates of
the points belonging to ¢’ also satisfy the linear equation

alzl + bly/ + Clzl + d = O, (**I)

which is obtained from (++) by replacing x, y, z by
their linear expressions with respect to z’, y’, z" accord-
ing to the formulas (x++) of Sec. 9-2. The equation (+')
cannot be an identily, since introducing in it the vari-
ables z, y, z (instead of 2', y’, z’) according to the
formulas (), we must get (+x) once again.

Hence, o’ lies in the plane specified by the equation
(++'). Let us show that ¢’ coincides with this plane.
Indeed, let (', y’, z’) be any point belonging to the
plane (x+). Under the affine transformation inverse
to (x) its image satisfies (¥+) and, consequently,
belongs to o’. Whence we conclude that o' coincides
with the plane (++) (and is]not its portion). This proves
that under the affine transformation a plane goes into
a plane.

Since under the affine transformation a plane goes into
a plane and the inverse of the affine transformation is an
affine transformation, different planes go into different
planes.

Since under the affine transformation different points
are carried into different points, then parallel planes are
carried into parallel planes.

Since through a straight line there can be drawn two
different planes, and under the affine transformation
different planes go into different planes, then under the
affine transformation a straight line goes into a straight line.

Since two parallel lines can be defined by the inter-
section of two parallel planes with a third plane, and
parallel planes under the affine transformation go into
parallel planes, then the affine transformation carries
parallel lines into parallel lines.

Let us note in conclusion that the affine transformations
in the plane possess analogous properties. In particular,
under the affine transformation in the plane straight lines
go into siraight lines, and parallelism is preserved.
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EXERCISES

1. Find the planes into which the coordinate planes
zy, yz, zz will go under the affine transformation ().
2. Find the straight lines into which the coordinate
axes will be carried under the affine transformation ().

Sec. 9-4. The Principal Invariant
of the Affine Transformation

Under the orthogonal transformation the distance be-
tween points remains unchanged. In this connection the
distance between the points is aninvariant of the orthog-
onal transformation.q We could mention many other
invariants of the orthogonal transformation, for instance,
the angle hetween straight lines, or the area of a triangle.
The distance between points is not only the simplest
but also the principal invariant, since the rest of the
invariants can be expressed in its terms.

Under the affine transformation the distance between
points, as a rule, undergoes a change, therefore the dis-
tance between points is not an invariant of the general
affine transformation.

An affine ratio of three points on a straight line is the
simplest and principal invariant of the affine transforma-
tion. The affine ratio of the points A, B, C on a straight
line is defined as the number

AB
(ABC) =27

Let us show that the affine ratio of three points on a
straight line remains unchanged under the affine trans-
formation, i.e. if under an affine transformation the
points A, B, C go into the points A’, B’, C’, then

(ABC) = (A'B'C").

In general, we may consider that the points 4, B, C
lie on the z-axis (the straight line AB may be taken for
the z-axis). Furthermore, we may consider that the points
A’, B’, C' also lie on Lhe z-axis, since applying an
orthogonal transformation which obviously leaves the
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affine ratio unchanged (preserving the lengths of line
segments) the three points A’, B’, ¢’ can always be
transferred onto the z-axis. In this case we have

(ABC)=lza=zs] gy liaie ]

|zp—zc | T

But the coordinates 2’ of the points A’, B’, C’ are related
with the coordinates « of the points 4, B, C by the equa-
tion

= apx + ay,,

and the equality of the affine ratios (4BC) and (4'B'C’)
are checked in an obvious way.

EXERCISES

1. Show that there exists an affine transformation
which maps a given arbitrary triangle into a regular one.
Show that the point of intersection of medians goes into
the point of intersection of medians.

2. Show that under an affine transformation’any given
parallelogram can be mapped into a square. Is it pos-
sible to map any quadrilateral into a square applying
an affine transformation?

3. Under what condition does the [affine jtransforma-
tion of a plane specified by the formulas (x) of the pre-
ceding section leave some point fixed?

Sec. 9-5. Affine Transformations
of Quadric Curves and Surfaces

Since the quadric curve is defined as a locus of points
whose Cartesian coordinates satisfy an equation of the
second degree, and the coordinates of a point are linearly
expressed in terms of the coordinates of its image under
the affine transformation, then wunder the affine transfor-
mation a quadric curve goes into a quadric curve.

Analogously, under the affine transformation a quadric
surface is mapped onto a quadric surface.
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Since the affine transformation carries parallel lines
into parallel lines and preserves the affine ratio of three
points, in particular, the mid-point of a line segment goes
into the mid-point of a line segment, then under the affine
transformation the diameters of a quadric curve are carried
into the diamelers, moreover, conjugate diameters go into
conjugate diameters, the centre being mapped into cenire.

Under the affine transformation quadric surfaces pos-
sess analogous properties.

Since under the affine transformation real points go
into real points and imaginary points into imaginary
points, the affine transformation carries a real curve into
a real curve, and an imaginary curve into an imaginary
curve.

Obviously, if a figure is finite, then under the affine
transformation its image is a finite figure; if a figure is
infinite, then its image is also an infinite figure.

Taking into account the above mentioned properties
of the affine transformation, we may conclude:

Under any affine transformation an ellipse is mapped
into an ellipse, a hyperbola into hyperbola, a parabola
into parabola, a pair of intersecting lines into a pair of
intersecting lines, and a pair of parallel lines into a pair
of parallel lines.

Analogous conclusions may be formulated for quadric
surfaces.

Two figures are said to be affinely equivalent if under an
affine transformation they can be mapped into each
other.

All ellipses are affinely equivalent to a circle

2+ = 1.

All hyperbolas are affinely equivalent to an equilateral
hyperbola

22—y =1
All parabolas are affinely equivalent to the parabola
y = 2%

Let us prove, for instance, the first assertion. Under
the orthogonal transformation any ellipse can be carried
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into the ellipse
2 y?
T rE= t.

And this ellipse, by uniform compression (elongation)
relative to the coordinate axes

7 T I}

X =—a- , y/ = % s

is transformed into a circle
2’ -+ y't=1.

When considering space, we may formulate similar
assertions concerning the affine equivalence of quadric
surfaces.

Fig. 92.

Finally, we are going to show that any affine transfor-
mation on the plane can be obtained by successive applica-
tion of three transformations: a uniform elongation (com-
pression) relative to two mutually perpendicular lines, and
an orthogonal transformation.

The proof is rather simple. Under the affine transfor-
mation the circle

+ oyt =1
will go into an ellipse £ (Fig. 92). Let A" and B’ be its
two successive vertices, Q' its centre, 4 and B the cor-

responding points of the circle. The straight lines OA

and OB are mutually perpendicular, since they are con-
jugate diameters of the circle (in fact, they correspond
to the conjugate diameters O’A’, O'B’ of the ellipse).
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We now introduce two systems of coordinates: zy,
taking the lines OA and OB for positive semi-axes x
and y; and zy’, taking the lines O’A’, O'B’ for 'the posi-
tive semi-axes. In the coordinate system z'y’ the ellipse E’
is specified by the equation

az'? + Py'? = 1.

There exists an orthogonal transformation which car-
ries the ellipse £

az? 4 fy? =1
into the ellipse E’, its vertices 4 and B being transformed
into the vertices A’ and B’ of the ellipse E’.

Let us now consider the affine transformation which
consists of a uniform elongation (compression) with res-

pect to the y-axis under which the point 4 goes into 4,
a uniform elongation (compression) relative to the z-axis

under which the point B goes into B, and an orthogonal
transformation under which the ellipse E is carried
into E’. The affine transformation designed in such
a way carries the points O, 4, B into the points O, A, B’,
like the given one, and, consequently, coincides with
it (see Sec. 9-2). The assertion has been proved.

An analogous assertion may be formulated for an affine
transformation in space. Namely, any affine transforma-
tion in space can be decomposed into three uniform com-
pressions (elongations) with respect to three mutually per-
pendicular directions, and an orthogonal transformation.

EXERCISES

1. Derive the properties of the conjugate diameters of
an ellipse from the properties of diameters of a circle.
Derive the properties of the diameters aud diametral
planes of an ellipsoid from the properties of the diameters
apd diametral planes of a sphere.

2. An affine transformation in the plane is specified
by the formulas

' = ax 4+ by + ¢,
Y = ax + by + ¢,
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As is shown, this transformation can be decomposed into
a uniform elongation (compression) with respect to two
mutually perpendicular directions and an orthogonal
transformation. Find the coefficients of elongation (com-
pression).

Sec. 9-6. Projective Transformations

Affine transformations of figures are a particular case of
more general, so-called projective transformations spec-
ified by the formulas

1 tu¥tapytaztay
41T+ QgoY T B3zt Ggy’

1 G93T+ age + Gg32+agy } (*)

x

y Ay T Gyl + Qg32+ gy’
7 — 431+ GgpY + 8352+ a5,
1T+ g0y ;- Gg9z2-|- a4y J

whose coefficients satisfly the only condition:

Q11 Q43 Q43 Ay
Q1 Gy QA3 Ay,
a3y QGgy Q33 ag
sy Gy Qg Gy

These formulas define the transformation for any fig-
ure I/ which does not intersect the plane o.:

anZ -+ g9y + ag3z + a4y = 0.

In our further considerations we shall assume that
the figure under transformation does not intersect with
the plane 0.

Obviously, this definition of the projective transformation
is invariant with respect to the choice of the coordinate
system.

A direct check may convince us that the successive
application of two projective transformations is a projective
transformation, the inverse of a projective transformation
is again a projective transformation, the identity transfor-
mation is also a projective transformaiion.
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The projective transformation possesses many proper-
ties of the affine transformation. In particular, under
projective transformations points lying on a straight
line are mapped inlo points lying on a straight line.

The affine ratio of three points, generally speaking, is
not preserved under the projective transformation, hut
in return, the anharmonic ratio of four points on a straight
line is preserved. This ratio is defined in the following
way.

Suppose 4, B, C, D are four points on a straight
line, and e is a non-zero vector which is not perpendicular
to the line. Then the anharmonic ratio of the points
A, B, C, D (taken in the given succession) is defined

as lhe number

— —
é-AC _e-AD

— — -
e-BC e-BD

Obviously, this definition is invariant with reference
to the choice of the veclor e. Therefore, taking the hasis
veclor e, as e, we obtain

(ABCD) =24 , ID"%A (+%)

Tc—7%pRp Tp—2pg

(ABCD) =

provided the z-axis is not perpendicular to the line AD.

If the y- and z-axes are not perpendicular to the straight
line, then analogous formulas are obtained with the
coordinates y and z. °

Let us show that the ankharmonic ratio of the four points
A, B, C, D on a straight line is preserved under the pro-
jective iransformation.

Generally speaking, we may consider that the points
4, B, C, D lie on the z-axis (the line AD may be taken
for the z-axis). Furthermore, we may consider that their
images A’, B’, C’, D' also lie on the z-axis, since under
the orthogonal transformation which, obviously, does
not change the anharmonic ratio, they can be mapped
onto the zr-axis. And the coordinates z’ of the points
A', B’, C', D’ are expressed in terms of the coordinates
z of the points 4, B, C, D by the formula

7 = 4117+ g
anT-ag

13—0406
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and through a direct check we get sure that

Tc—2Tp , TD—TA Tor—Zpx s Tpe—Z 4,
zc—2xp  &p—1Ip o —2Zg, © Tpo—2zg’
o

i.e.
(ABCD) = (A'B'C'D’),

which was required to be proved.
Projective transformations in the plane are specified
by the following formulas

2 = ATty +ag @y Qg Gy
T eyt agy+ag
Qg1 gy Qo |70 (+xx)
r_ 81T T Ggsly + Qg

= a8+ agoy tags * 1 %s1 @32 Qas

and possess similar properties.

The term “projective transformation” is linked with
the following property "of these transformations.

Any figure F' contained in a plane o obtained from
figure F of the same plane by means of a projective trans-
formation not reduced to the affine transformation can be
obitained by central projecting from a centre S of figure I
congruent to F.

Conversely, any figure obtained by central projecting can
be obtained from F under a projective transformation.

We are going to prove only the second part of the
assertion. Without loss of generality we may consider
that the zy-plane is the plane a.

Let A (z, y, 0) be an arbitrary point o of the figure 7,
A (z, y, z) the corresponding pomt of F, S (zg, Yo 20)
the centre of projecting, and 4" (2, ¥, 0) the projection

of f_f_from the centre S on the zy-plane. Since the points
S, A, and A’ are collinear, we get

z’' —x, — ¥ —¥o — %
T—2y Y—Y 2—13
W hence
L T 15

2— 2, z2—1,
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Since z, y, and z are linearly expressed in terms of z
and y (figure F is obtained from ¥ via an orthogonal trans-
formation), the expressions for 2’ and y’ in terms of z
and y will have the form (+++) which means that the
figure F’' obtained by projecting can also be obtained
by means of a projective transformation of the figure F.

EXERCISES

1. Show that a projective transformation in the plane
is defined uniquely if it is specified for four points no
three of which are collinear.

2. Express in terms of the anharmonic ratio (4ABCD)
the anharmonic ratios of these points taken in any other
order, for instance, (ABCD), (BACD), and so on.

Sec. 9-7. Homogeneous Coordinates.
Supplementing a Plane and a Space
with Elements at Infinity.

In a plane, the homogeneous coordinates of a point,
whose Cartesian coordinates are z and y, are any three
numbers z;, r,, z; (not all equal to zero) for which

Zy Zg

xs, -

X = .
Z3

The homogeneous coordinates of a point are defined not
uniquely. Namely, if z,, z,, 3 are the homogeneous
coordinates of a point, then pz,, pz,, pr; (p == 0) will
also be the homogeneous coordinates of this point.

Since in Cartesian coordinates any straight line is spec-
ified by the equation

Q@+ ay+a,=0 (@3 +a240)

and any equation of this form is the equation of a straight
line, then any straight line is specified in homogeneous
coordinates by the equation

a2y + ay%; -+ agr3 =0 (al--als=0)
and any such equation is the equation of a straight line.
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For any point (z, y) in a plane it is obviously possible
to find three numbers which will be its homogeneous coor-
dinates, for instance, z, y, 1. The converse is, generally
speaking, false. Namely, for the three points z;, z,, z3,
where z, = 0, it is impossible to indicate a point for
which these numbers would be its homogeneous coordi-
nates. This circumstance causes many inconveniences
when considering a number of problems concerning, in
particular, projective transformations of figures. In
connection with this, we shall supplement the plane
with new elements, namely, infinile points and a straight
line at infinity.

Hence, we shall consider that to the three numbers
z,, z,, %5 there corresponds a point at infinity if 23 = 0.
The locus of infinite points will be called a straight line
at infinity.

In a plane extended in such a way any equation of the
form

a2, -+ ayxy + azzs = 0

is the equation of a straight line. If a; = ay, = 0, then the
line is at infinity.

In an extended plane any two straight lines inlersect,
since the system of two linear equations

ayy 4 5%, 4 a323 =0, } (*)
b1$1+b2$2+b3x3=0

always has a non-trivial solution (z,, z,, z; are not all
equal to zero). In particular, two parallel lines intersect
in a point at infinity. Indeed, if the straight lines («)
are parallel, then

a _ a8y _

b= b A.
Multiplying the second equation of the system (x) by
A and subtracting it from the first equation, we get
(a3 — Abg) z3 = 0, whence z3 = 0.

The projective transformation of figures introduced in

the preceding section can be continued on an extended
plane. Namely, let us consider on an extended plane
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a transformation specified by the formulas

L= ATy -+ Q1oTy + Q4323, |Cy1 Gy Q3
Ty= 05Ty + AppTy | A3T3, |Qgy Qg Qa3 |7 0.
Ty3= Q3%+ A3op + C33%3, |Q31 (39 GAgs
On a non-extended plane this transformation coincides

with the projective transformation introduced beiore.
Indeed, on a non-extended plane

23#£=0, z;5£0.

Dividing the first two formulas by the third one term-
wise, we get
r_ ﬂ11~"3+alzy+ﬂ
a3z + asey +asz’
,=¢121x+a22y-}-a23
4312+ ag9y + 33

Yy

For a space the homogeneous coordinates x;, z,, z3, %,
of a point are introduced analogously as the four numbers
related with the Cartesian coordinates as follows

Ty ) T3
T =—, y=—-—, Z=—.
z4 Z4 A

In just the same way a space is also supplemented with
elements at infinity: infinite points, infinite straight lines,
and an infinite plane. And it turns out that in a space
supplemented with elements at infinity any equation

a2, + gy + agzs + agy, =0

specifies a plane (an infinite one if ay = a; = a3 = 0),
any two independent equations

a2y + axxy + a3z; + a2, =0,
bty + boxy + byty + bezy =0

define a straight line (possibly at infinity if Z—‘:b— =
1 2

__“i)
=3>).
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The projective transformations defined in the preceding
section are spread to an extended space and are specified
in homogeneous coordinates by the formulas
Ty = a13%; + Gy9Tp + 13T3 F Q14T
Ty = QT + g9%y + A93%5 + Q474
Ty = Gg1%) + A39%y + Ag3T3 + A34%4,

Ty = A%y T Qge%y + Ags®s + Qg4
a1y Q12 Gy3 Ay
Q31 Qg Qg3 Ay,
A ==0.
Ggy Qgy Ggz QAgy
Auy Gy Gy Ay

EXERCISES
1. Derive the formulas for the projective transforma-
tion of an extended plane which carries the straight lines
2, =0, 2, =0, 2z = 0 into the straight lines
alxl + blxz + Clxs = 0,
as®y + byZy + 373 = 0,
d3$1 + bsxz + Caza == O-

2. Find the coordinates of the point of intersection of
the straight lines

Ti%g — Z%y _ Zo%y —Ty%s _ T3%a— Ty%3
kl - kz k3 ’

1By —24f1 — oy — 24P, — z3Bs — 4By
ky ky ka ’

Sec. 9-8. The Projective Transformations
of Quadric Curves and Surfaces

In homogeneous coordinates a quadric curve is, obvi-
ously, specified by the equation

ants +2a5x,25 + . . . +agal =0, (*)
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which is obtained from its equation in Cartesian coordi-
nates

ay2® 4 20500y + o oo+ az3 =10 (%)
by replacing z by ZLoand y by 2=
T3

Let us supplement a plane with 1nﬁn1te elements and
continue the curve specified by the equation («) on the
extended plane by joining to it all ideal points (if any)
which satisfy the equation (x).

Let us show that on an extended plane a quadric curve is
projectively equivalent to one of the following simple curves:

B2+ a3 =0,

2 2 2
22 —axy+a;=0,

;L-i + .‘l:: =0, (***)
2 —a3=0,
2
Ty = 0, J

i.e. can be mapped by a projective transformation into
one of them.

Considering the reduction of a quadric curve to the
canonical form (Sec. 3-8), we showed that there exists
a system of coordinates z'y’ in which the equation of the
curve (x+) takes one of the following forms:

az'?2+By'2+y=0

az'?+Py'2=
ax'? 4By’ =0,
z2=0.

Analytically it means that we may introduce into the
equation (++) mew variables z’, y' related with z and y
by the formulas of the form

7

T =ag,x + ol + g,
1

Y =0 + Qgol + %gg,

so that the equation () will take one of the above
forms.
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Whence it follows that if the projeclive lransformalion
Ty = 01y + ey + XygTs,
Ty = Olgy Ty + Olpoly + Qagls,
J:; = T3
is applied to the quadric curve (x), then we shall obtain
one of the following curves:
oz +Pz; + ya; =0,
ozt Pzl =0,
ax] -+ Prozs =0,
z7=0.
As to these curves, they are readily carried into the
curves (x*x) by a simple projective transformation.

For example, in the first case we have to apply the pro-
jective transformation

z=VTalz, z=V1B]2, zo=V1v]zs
in the second

$1=erc1; x;=VW$2§ Zy= I3
in the third
s=VTalz; #=2SF2VBL z=22"2yTp]

A similar assertion may be proved for quadric surfaces
in a space supplemented with infinite elements. Namely,
any quadric surface is projectively equivalent to one of the
following surfaces DL

xy+ 5+ 25+ 23 =0,
at a2l + a2 —a; =0,
2t al—al—ai=0,
2} a4 a3 ==0,
xl +ai—al=0,

2 2

x; 425 =0,

2 2

x;—a;=0,
2 __
z:=0.

The proof is analogous to that given for curves.
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EXERCISE

1. Find the projective transformations which map the
curves

(a1 + asy + as2s)® &= (by2y + Doy + byws)?= 0,
(a2 + asxs + ag23) (012 + baZy + byzs) = 0.

into one of the canonical forms (sxx).

Sec. 9-9. The Pole and Polar

Introducing homogeneous coordinates into the for-
mula (x+) of Sec. 9-6 for the anharmonic ratio, we get

14 ZTyiC T1A 1D

(ABCD) = 1%aa Zacl . 1T4a D] (*)
1B T1C 1B *1D |
T4B  ZsC TyB %4D

and respectively two other formulas with 2z, replaced
by z, or .

The anharmonic ratio of the points on a straight line
in a space supplemented by infinite elements is defined
by the formula (x). Independent of the proof given in
Sec. 9-6, we can show that the anharmonic ratio thus
defined is preserved under the projective transformation.
We leave this to the student.

Suppose we have a quadric surface

i, j=

4
2F = 2 . ik ; = 0 (**)

and a point 4 (z;, z;, Z;, ¥;), not lying on the surface.
Through the point A we draw an arbitrary straight line
to intersect the surface (++) at points C and D. We
then construct a point B, harmonically separating the
points C and D from the point A4, i.e. such that (ABCD)=
The locus of the points thus constructed is called the
polar of the point A. The point 4 is called the pole with
reference to the polar.
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We are going to form the equation of the polar. Let
Zy, %y, T3, Z, be the homogeneous coordinates of the

point B. The coordinates z; of any point of the line AB,
different from A, may be represented in the form
zi=xi+-Azi (=1, 2, 3, 4). (w5

Indeed, the straight line 4B is specified by two linear
equations:

Eaixi=0, Zbixi=0.
Since the rank of the matrix

(ai Ay ag a4)
by by b3 by
is equal to two (the equations are independent), any solu-

tion of this system represents a linear combination of two
independent variables:

a-v'i=p,:c,-—}—vx{ (i=1, 2, 3, 4).

If the point is different from A, then p 5= 0 and the coor-
dinates z; can be divided by p to obtain the above repre-
sentation.

We may convinece ourselves by a direct check that the
anharmonic ratio of four points 4, B, A4 4 B, p4 +
4+ B (¢4 + B is a point with the coordinates ex; + i)

(4, B, A+ B, pA+B) =~

Whence it follows that the points C and D of inter-
section of the line AB with the quadric surface allows the
representations

C=M +B, D=—MM + B

Substituting the coordinates of the points C and D
into the equation of the surface, we get

Zjaij (2 Az + i) (&= Az + 25) =

= Aziz' a;;xir; + 20 2 aijx,-a:} -+ 2 a,-ja;éx} = 0.
s 7 1,7 7
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Whence it follows:
D) azix;=0.
i 7

which is the equation of the polar. Hence, the polar rep-
resents a plane.
Let us here note two important properties of the polar:
1. The polar of any point B belonging to the polar of
point A passes through A.
2. If a point A moves along a straight line, then its
polar turns about some straight line.
Indeed, the equation of the polar of the point
B (z3)
Z ai;2;25=0
1,7
is satisfied by the coordi-
nates of the point A4, since

D) aiyzidh = ) a;iz;
& i

(az‘j = a’ji)v

and

Z aijw;;x.;. = Oy
7

since B lies on the polar Fig. 93.
of the point A.

Suppose a point 4 moves in a straight line joining the
points A’ (z}) and A" (7). The polar of any point of this
line will be

LZJ, ay, (M zj+ A'75) =0,
or
% 121 aijzix; 4+ A 121' a3 = 0.
Whence it is seen that the polar rotates about a straight
line specified by the equations

Z a5 =0, Z ai;xiz; == 0.
17 i
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The polar of the point A (z;, z;, z;) with reference to
a quadric curve is defined analogously (Fig. 93). 1t
represents a straight line and is specified by the equation
3
X ay@;=0,
1, 7=

if the curve is specified by the equation
3
> a;;xiz;=0.
-j=
EXERCISES

1. Show that point C which together with an infinite
point- of the straight line AB harmonically separates the
points A and B, is the mid-point of the line segment 4 B.

2. The complete quadrilateral is defined as a figure
consisting of four points, no three of which are collinear,
and six straight lines joining them pairwise (Fig. 94).
Show that the pair of points G, H harmonically separates
the pair of points E, F. (Make use of Exercise 1 and of
the invariance of the anharmonic ratio under the pro-
jective transformation).

3. Justify the following method of constructing tan-
gent lines to a conic section from an arbitrary point S
(Fig. 95). Lines 7 and 2 are drawn arbitrarily, the rest
of the lines in the order of numbers according to the
figure.
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4. How to draw a tangent line to a conic section at
a given point using only a ruler?

5. Given a conic section and a straight line. How to
construct the pole of the siraight line with respect to
the given conic section using only a ruler?

6. Let & be a conic section. We take an arbitrarystraight
line f and a point A on it. Construct the polar g of the

Fig, 95.

point A with respect to k. It will intersect f at point 5.
The polar % of the point B intersects the line g at point C
and passes through the point A. In such a way we have
constructed a triangle ABC whose sides are the polars
of opposite vertices. This triangle is called a self-polar
triangle.

Show that if the sides of the self-polar triangle are
taken for the lines z, = 0, z, = 0, and z3 = 0, then
the equation of the conic section % will have the form

axf + Paj + v =0.

7. Derive the properties of diameters and diametral
planes from the properties of poles and polars.

8. Show that the polar of the focus of a conic section
is the directrix.
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Sec. 9-10. Tangential Coordinates

Any straight line contained in an extended plane may
be uniquely associated with the ratio of three numbers
Uy : Uy : uy which are the coefficients of its equation in
homogeneous coordinates:

w1y + Uy + usry =0. (*)

The numbers u,, u,, us will be called the homogeneous
coordinates of a straight line. The homogeneous coordi-
nates of a straight line are defined not uniquely. Namely,
if wu,;, uy, ug; are the homogeneous coordinates of a
straight line, then opu,, pu,, pus (p = 0) will also be
homogeneous coordinates of this line.

Let us find out the geometrical meaning of the equation

Uy Ty + UpTy + ugzy =0, (#*)

in which u;, u,, ugz are variables, and zi, 23, 2 are fixed
quantities.

To each solution u], uj, ug of the equation (xx) there
corresponds a straight line

0 0 0
Uy g+ ugy 4 ugzs =0,

passing through the point (zf, zJ, 23). Conversely, the
coordinates of any straight line passing through this
point satisfy the equation (s=). Hence, the equation
(+x) is satisfied by the coordinates of the straight lines
forming a pencil with the centre (!, z3, z3), and only
by them. This is why the equation (xx) is called the
equation of a pencil.

In case of a space we proceed in an analogous way,
introducing the homogeneous coordinates of a plane
Uy, Uy, Ug, Uy aS the coefficients of its equation in homo-
geneous coordinates.

For fixed 2} and variable u; the equation

uimg "‘}— UQ$g ‘.L' u:;mg + U4$2 =0
specifies a bundle of planes with centre (z3).
The equation
' (w1, Ugy u:}) =0,
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which is satisfied by the homogeneous coordinates of
tangent lines to a curve and only by them is called the
tangential equation of the curve. Let us form the tan-
gential equation of a non-degenerate quadric curve.

In Sec. 8-8 we obtained the equation of a tangent line
to a quadric curve in Cartesian coordinates. Passing
over to homogeneous coordinates, this equation is reduced
to the following symmetric form:

xini + szxé + $3Fx‘:, =0,
where

Fo=aya; + Q1o + Q43Z4,

Fy;=anz; + 25Ty + Qa3

Fxé = a7y + gpxy + Q357

Whence it follows that the homogeneous coordinates
of the tangent line at point (zj, z,, z;) are

u1=in, u2=Fx£’ u3=Fxé.

Solving these equations with respect to z;, z;, z; (the
determinant of the system is non-zero, since the curve is
non-degenerate), we get for them the linear expressions
in terms of u,, ug, uz. Since the point (z7) lies on the
curve, its coordinates satisfy the equation of the curve.
Substituting x} expressed in terms of u; into the equation
of the curve, we get the tangential equation of the curve.
Obviously, it will be of the second degree and homoge-
neous with respect to the coordinates u;:

2(1) (ui) qu u3) = biiui + 2b12u1u2 + e '—I— bsguz = O. (***)

In connection with this a quadric curve is said to be a
curve of the second class.

Let us find out how to understand geometrically the
totality of straight lines whose coordinates satisfy an ar-
bitrary equation of the form (¥x+). As it has been shown,
it may be a totality of tangent lines to a non-degenerate
quadric curve. But this does not exhaust all the pos-
sibilities. For instance, the equation

(aguey + Qgly + otgug)) (Biuy + Potte + Paus) = 0
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specifies two pencils of straight lines with centres (o;)

and (P;).
In Sec. 9-8 it was shown thal any gquadric curve

Z a;rix; =0
‘L ]_
can be carried by a projective transformation into the
curve
2 2 2
&2y + &y75 + sz = 0,

where &; are numbers equal to +1, —1, or 0. Analyti-

cally it means that ) a;;z;x; can always be represented
in the form
3 3

2
Z (2 lJ’vJ') ’
f e Y
the determinant formed from a;; being non-zero.
Whence it follows that the equation (xxx)can always
be reduced to the form
3 3

Z &; ( 2 ocijuj)2= 0.
=1

i=1
If all &; are non-zero, then this equation specifies
tangent lines to a non-degenerate quadric curve. If one
of the coefficients ¢;, say ¢;, is equal to zero, then the
equation
&y (Ant + oygly + ot3us)® -+
+ &g (gr¥y + %gslhy + Qgsus)® = 0
may be represented in the form of a product of two linear
(with respect to u;) factors (either real or complex):

(Bua#s + Brgs + Prss) (Barley + Paguts + Posuus) = 0,

and the equation specifies two different pencils of straight
lines. If both coefficients ¢; are zero, say e, and &g, then
the two pencils merge into one:

2 _
(0t11y + gty + aygu3)® = 0.

Quadric surfaces in space are considered in just a sim-
ilar way. We confine ourselves liere to formulating the
results obtained, omitting the work.
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The tangential equation of a non-degenerale quadric
surface has the form
A

2 a;juin;=0.

i, j=1

The totality of planes whose homogeneous coordinates
salisfy an arbitrary equation of the form

4
2 a'ijuiu'j=07
i, j=1
consists either of tangent planes to a non-degenerate
quadric surfaces, or of planes passing through the tan-
gent lines to a conic section, or of two bundles of planes
which, in particular, may merge.

,In conclusion, let us consider the so-called correlation.
In an extended plane this is a linear transformation
which carries a figure F consisting of points into a figure F’
consisting of straight lines so that the coordinates of a
straight line belonging to the figure F’ are expressed in
terms of coordinates of the corresponding poinl of the
figure F according to the formulas

Uy =0y Ty + Q1% |- C43Z3, |Qyy G1p Qg3
Uy == Qo) Ty + Qopy + QosT3, |Gy Qo Gps|F= 0.
U3 = 03Ty | Q3pTy 4 B33T3. |Gz Qg G33

This transformation allows a simple geometrical
interpretation if a;; = a;;. Namely, it consists in asso-
ciating the point (z,, z,, z;) with its polar with reference
to a quadric curve specified by the equation

Zaij:ci:cJ-:O.

Whence it follows that points lying on a straight line
go into straight lines passing lhrough the point. This
principal property of correlation takes place in the
general case (a;; % a;;) as well.

Correlation in space is defined analogously. Each
point A of the figure F is associated with the plane a of
the figure /' whose coordinates are linearly expressed in

14—-0406
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terms of the coordinates of the point 4. Correlation in
space may be represented through the correspondence of
poles and polars wilh reference to a quadric surface.

EXERCISES '

1. The anharmonic ratio of four straight lines of a pencil
is defined as an anharmonic ratio of four points of inter-
section of these lines with
an arbitrary straight Iine not
passing through the centre
of the pencil. Show that this
definition is invariant with
respect to the secant straight
line, and find the expres-
sion of the anharmonic ratio
in terms of the homogeneous
coordinates of the straight
lines.
Fig. 96. Show, in particular, that
the anharmonic ratio of the
straight lines (u;), (v;), (u; + Av;), and (u; 4+ pv;) is
equal to A/p.

Show that under correlation the anharmonic ratio of
four points of the figure F is equal to that of the corre-
sponding straight lines (planes) belonging to the figure F’,

2. With the aid of Pascal’s theorem (see Exercise 9
to-Sec. 3-8) prove the following Brianchon’s theorem:
If a hexagon is circumscribed about a conic section, then
the lines joining pairs of opposite vertices are concurrent
(Fig. 96).



Answers to the Exercises,
Hints and Solutions

Chapter 1
Sec 1-1

1. (a) The points of the zy-plane for which | z | = a lie on two
straight lines parallel to the y-axis at a distance a from it. (b) The
points for which | z | = | y | lie on the bisectors of the quadrants.

2. (a) The points of the zy-plane for which | z | < a lie within
the band between the straight lines r?arallel to the y-axis and situ-
ated at a distance a from it. (b) The points for which | z | < a,
| ¥y | < b lie inside a rectangle with the centre at the origin and
sides 2z and 2b parallel to the z- and y-axes.

3. The coordinates of the point symmetrical to the point
A (z, y) about the z-axis will be z and —y; the coordinates of the
point symmetrical to the point A (z, y) about the y-axis will be
—uz, y; and the coordinates of the point symmetrical to the point
A (z, y) about the origin will be —z, —y.

4. The coordinates of the point symmetrical to the point
A (z, y) about the bisector of the first (second) quadrant will be
¥y, T (—'ys _‘t)

5. If the y-axis is taken for the z-axis and the z-axis for the
y-axis, then the point A (2, y) will have the abscissa y and the
ordinate z.

6. If the origin is displaced to the point A (zy, y,) without
changing the direction of the coordinate axes, then the point
A (z, y) will have the abscissa z — z, and ordinate y — y,.

7. If the diagonals of a square whose side is equal to 2a are
taken for the coordinate axes, then the abscissa and ordinate of
the mid-points of the sides of the square will be equal to + a/V 2.
The sign depends on the side taken. Four possible combinations
of signs correspond to the four sides of the square.

8. For a point to be situated between two other points it is
necessary that its abscissa (or ordinate) be enclosed between the
abscissas (ordinates) of the two other points.

See. 1-2

1. Equating the distances of the required point (z, 0) from the
two given points, we find the equation for z:

(@ — 2 + (g1 — 02 = (23 — 2)* + (v, — 0)?,
14*
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or
2(zy—zy) £ =y3—yi - 2§ —2i.
Whence we find z. In the particular case we have: 2 = (b2 — a2)/2b.

2. Find the distance d between the points 4 and B. The third
vertex (C) of the triangle is located at a distance d from the vertices
A and B. The coordinates z, y of the vertex C are found from the
two equations thus obtained. The problem has two solutions which
correspond to the two triangles situated symmetrically about the
straight line AB.

3. Knowing the coordinates of the vertices A and B of the
square, we find the side of the square a as the distance between A
and B. The third vertex C is determined from the condition that
it is situated at a distance a from B and at a distance a V' 2 (the
diagonal of the square) from 4. The fourth vertex D is determined
from the condition that it is found at a distance ¢ from 4 and C
and is different from B. The problem has two solutions.

4. If A (21, 11), B (zs, ys), and C (zg3, y;) are the vertices of a
riglht-lz;mgled triangle with the right angle C, then the condition
will be

(g — 29)2 + (¥ — ¥2)® + (25 — 2)? + (y5 — Yyt =
= (z3 — 21 + (2 — y1)%

This condition represents a coordinate notation of the Pythagorean
theorem for the triangle ABC.

5. If 4 (21, y1), B (2, ys), and C (x5, ys) are the vertices of
the triangle, then the condition that the angle A of the triangle
exceeds the angle B will be expressed as foﬁows

(25 — 29)% + (y3 — ¥2)® > (23 — 2% + (3 — ¥1)%

This follows from the fact that in any triangle the greater side is
opposite the greater angle and, conversely, the greater angle is
opposite the greater side.

6. Find the centre O of the circle circumscribed about the
triangle ABC and compare the radius R of this circle with the
distance from the centre to the vertex D. The quadrilateral will
be inscribed in the circle if OD = R. The quadrilateral will not
be inscribed in the circle if 0D = R.

7. This is the “inequality of a triangle” for the points with the
coordinates (2, b), (a1, by), (ag, by).

See. 1-3

1. Let for definiteness (zy, y;) and (g, y3) be the opposite ver-
tices of the parallelogram. Then the coordinates of the centre of
the parallelogram will be

Zy=

z,+z
_1‘12‘3’ %

_Y1tUs
2 .
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The coordinates z, y of the fourth vertex are found {from the equa-
tions '

Za+z _ Yty
2 ’ Yo= 2 .
2. The point of intersection of the medians divides each median

in the ratio 2:1, as measured from the vertex. The coordinates of
the point of intersection of the medians will be

_nit T+, ___yl’i"yz’i‘ys
-~ 3 7 3

$0=

x

3. The mid-points of the sides of the triangle and any of its
vertices taken together are the vertices of a parallelogram. There-
fore the problem is reduced to Problem 1.

4. z; = (1 — M z¢ + Axzy, yg=(1——9\.)yo+9\,yi,i=1, 2, 3.

5. To solve this problem make use of the geometrical reasoning
considered in connection with dividing a line segment in a given
ratio (see Sec. 1-3).

6. Let (x4, y;) and (z, ys) be the end-points of one line segment,
and (z3, y3) and (x4, ys) the end-points of the other segment. If
the segments intersect, then the coordinates of the point of inter-
section allow two methods of representation:

(I =ty tzg = (1 — 1) 25 + t'zy,
A=ty +tya= 10— 1) ys+ t'ya

The segments intersect if the solutions of this system with respect
to t and ¢’ satisfy the conditions 0 < ¢, ¢ < 1.
7. Use the method of mathematical induction.

Sec. 1-4

1. (1) If @ = 0, the centre of the circle lies on the y-axis; (2) if
b = 0, the centre of the circle lies on the z-axis; (3) if ¢ = 0, the
circle passes through the origin; (4) if ¢ = b = 0, the centre of
the circle is at the origin; (5) if @ = 0 and ¢ = 0, the circle touches
the z-axis at the origin; (6) if > = 0 and ¢ = 0 the circle touches
the y-axis at the origin.

2. Pay attention to the fact that (zr — a)2 4 (y — b)? is the
square of the distance of the point (z, y) from the centre of the
circle, and use the Pythagorean theorcm as applied to the right-
angled triangle in which one leg is a tangent Lo the circle, the
other leg being the radius of the circle.

3. Make use of the fact that the power for external points is
equal to the square of the length of the tangent, and for internal
poinls to the square (taken wilth the minus sign) of half the length
of the chord passing through the given point perpendicular to the
diameter joining this point to the centre of the circle,
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4. Suppose (z, y) is a point of the locus. Its distances from
F, and F, are respectively equal to

VE—o T, Vetorte
The equation of the locus of points:
V=224V (z+ >+ y*=2a.

To reduce this equation to the form

22 y?
wtE=1

we have to transpose the first radical to the right-hand side of the
equation and to square both members. We get

@+ +y2=ba®—da V (@—cf Fy+ (e —cP 442

Leaving the radical in the right-hand member of the equation and
transposing the remaining terms to the left-hand side, after obvious
simplifications we get

cz—at=—a V(z—c)2+42.
Squaring both members, after simple transformations we obtain
at — o = a%y? | (a® — ) 22,
whence

z2 y2

e U A 2__, 2 —p2
e (12—(:2—1’ a?—ct=>52.

5. The problem is solved analogously to the previous one, the
initial equation being
VE—P i —V @t Fvi=+ 2.
6. The equation of the locus:
Vy—pPfa=y.
After squaring and simplifications the equation takes the form
—2py + p? - 2% = 0.

Sec. 1-5
1. The equation of the curve in implicit form:
(v — a)® 4 (y — b)® = R,

Whence it is seen that a and b are the coordinates of the centre, and
R is the radius.
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2. The equations of the curve:
Aa pa .
cos t, = —— sint.
p y

T Ap
For A = p the curve is a circle.
3. The equations of the curve:

r=

= g cost 4 hsint, y = bsint -} hcost,

where a, b, h, and the parameter t have the values indicated in

Fig. 14. To get these equations represent the abscissa z and ordinate

y of the point on the curve in the form of anJalgebraic sum of the

lengths of the projections of the links of the polygonal line 0OABC.
4, The equations of the curve:

s .8 s ,
r=R (T—sm —R—) , y=R (1.—-cosT) (a cycloid)

The problem is solved like the preceding one. Here the polygonal
line is OTSA.
5. Solving the equations

ax® 4 bay -+ cy?+dr+ey=0, tz_i_

with respect to z and y, we get the equations of the curve in para-
metric form:
d—-et dt et

xr = Y=

Taf bttt Tatbidct® "

See. 1-6

1. The points of intersection of the circle with the z-axis are
obtained by solving the system of equations

22 + y? 4 2az 4 2by +-c =0, y=20.
The circle does not intersect the z-axis il the roots of the equation
22+ 20z 4 ¢c= 0

are imaginary. The circle intersects the z-axis at two points if the
roots of this equation are real and different. The circle touches the
z-axis if the roots coincide.

2. The circles intersect at two points if Ry 4+ R, > d, where
R, and R, are the radii of the circles and d is the distance between
their centres. Ry, R,, and d can be expressed in terms of the coei-
ficlents of the equations of the circles. One can also find these
conditions by solving the system formed from the equations of the
given circles.
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3. The points of intersection of the circles:

(+ ﬁ) (+ _y3 )
2 2 2 2/

4, The point of intersection of the curves: (1, 0).

5. If the point (2, y) satisfies the equations of the curves, then
the points (—=z, y) and (z, —y) which are symmetrical to it about
the coordinate axes also satisfy these equations. Therefore the
points of intersection are situated symmetrically about the coor-
dinate axes.

Chapter 2
Sec. 2-1

1. The equation may be written in an equivalent way
(az 4 by 4 ¢) (az + by — ¢) = 0.
It is satisfied only by the points of the straight lines az + by 4-
4+ ¢=0, ar 4+ by — ¢ = 0 and only by then.

2. See Sec. 1-6.
3. Suppose the straight lines intersect at some point (z, ¥y).

Then
ary + by +¢=0, Az 4 By, 4 C = 0.
Multiplying the first equation by A, and the second by a and

subtracting termwise, we get Ac — Ca = 0. This equation together
with Ab — Ba = 0 yield the following proportion

e _b__c

A B ¢

from which it follows that both equations specily one and the
same, but not different straight lines.
4, The radical axis of the circles

2+ P e+ by =0, 2 4 y* + apx + bgy 4 ¢, =0
is represented by the equation
(ag —ag) x4 (by — b)) y + ¢4 —cy = 0.

See Exercise 3 of Sec. 1-4.
5. If (z1, y;) and (z,, y,) are the two given points, then the
uation ol Lhe locus will be

(=2 + (y—y)?— (e — ) — (y —pa)* = @

This equation is linear wilh respecl Lo z, y.
6. The point (z’, y’) lies on the ray passing Lhrough the point

z, y) and Var2qy'? . V231 ¢*=R?,
i ¥



Answers to Exercises, Hints and Solutions 217

7. Let
2?4yt ez L by =0

be the equation of the given circle. Dividing it by z® 4- y2, we get.

ar by L
=0,
1+3«'2+U2+13+y2 a2yt

Noting that

. R% , Ry vai ia R
vEmEreg Y Tayp TV T Ay

we obtain the equation of the transformed curve:
a b , c , ,
Itz ¥ +gr @y ) =0.

In the general case this is the equation of a circle. If ¢ = 0, i.e.
if the initial circle passes through the origin (the centre of inver-
sion), a straight line is obtained.

8. The equation ax -} by 4- ¢ = 0 has an equivalent form

2(@y—xg) 2+ 2 (Yo—yo) ¥+ (20 + yo>— 2§ —¥8) =0,

when z§ and y{ are the coordinates of the point A*. From the
equivalence of the above equations there follows the proportion

2(xg—20) _ 2(Wo—Va)_ To®+Uo—2i—ud

a b ¢

Whence we find z; and yg.
9. The fact that the determinant is equal to zero guarantees
the existence of a non-trivial solution of the system

azy+ by, +c=0,
azy+ by, +c=0,
axg+bys+c=0

with respect to a, b, ¢ (a and & cannot be both equal to zero). The
straight line passing through the given points has the equation
ar + by 4+ ¢ = 0.

Seec. 2-2

1. The straight line intersccts the positive semi-axis z if c/a <
< 0. Tt intersects the negalive semi-axis z il ¢/a >0

2. The straight line docs not intersect the first quadrant if
a, b, ¢>=0, or a, b, ¢ <O.

3. II the poiut (z, y) satisfies the first equation, then the point
(z, —y) which is symmetrical to it about the z-axis satisfies the
second equation.
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4. If the point (z, y) satisfies the first equation, then the point
(—=z, —y) which is symmetrical to it about the origin satisfies the
second equation.

5. The straight line is parallel to the z-axis if A satisfies the
conditio}? a -+ hay = 0. The straight line passes through the origin
if ¢ - de; = 0.

6. The straight line, together with the coordinate axes, bound
an isosceles triangle if |a| = |b]|.

7. ]

and ‘%‘ are the legs of the right-angled triangle.

8. The tangents are given by the equation of the formz — A = 0
(or y — A = 0). The quantity A is determined by the condition
that the equation A? 4+ »? 4 2a) 4 2by = 0 (2% 4 A% 4 2az
-+ 2bA = 0, respectively) has the unique solution with respect
to y (2).

Sec. 2-3

1. Use the formula (*) given in Sec. 2-3.

2. The straight line forms with the z-axis an angle of n/2 — «.

3. If the side of the triangle lies on the z-axis and its altitude
on the positive semi-axis y, then the equations of its sides will be

y=0, y=¥+z1f§, zr_@—x}/ﬁ.

4. This is an isosceles triangle situated symmetrically about
the bisector of the first quadrant.

5. Compare the angles formed by the straight lines with the
z-axis. The required condition is a/b = —a,/b,.

6. Pass over to specifying the straight line by the equation
—bec—(y—d)ya=0.

7. Pass over to specifying the straight lines by the equations
in implicit form.

8. The vertices of the quadrilateral are situated at the point

(££0). (0 23).
Sec. 2-4

1. The straight lines are given by the equations of the form
z y T ¥
T+T=1’ T+T=1i |“|=lb” |C|=|d|

For these lines cither ad — bc = 0, or ac -+ bd = 0.

2. Pass over to the implicit form of equations for the given
lines. The parallelism condition is a;f, — By, = 0. The perpen-
dicularity condition: oo, 4- Bifs = O.

3. The parallelism condition: aa + by = 0. The perpendicu-
larity condition: ey — ba = 0.
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4. In the case of parallelism the parameter A is determined from
the condition (a; 4 a,A) & — (b - b,A) a = 0. In the case of
perpendicularity from tﬁe condition (a; + a,A) a 4 (by + byh) b =

Sec. 2-5

1. When substituting the coordinates of the given point and
the coordinates of any of the vertices in the left-hand side of the
equation of the side of the triangle opposite this vertex, we must
get expressions with the same sign. If at least for one vertex these
expressions are of different signs, then it means that the point
is situated outside the triangle.

2. We have

az+ by"‘cl_az‘l'by‘}‘cz — lex—¢es |
V a* bt Vato® |- Vater’
If A (z, y) is a point on one of the straight lines, then the left-
hand side of the identity represents the distance of this point

from the other line, i.e. the distance between the lines.
3. The straight lines are represented by equations of the form

ar + by + ¢/ = 0;

¢ is determined from the equality | ¢ — ¢’ | = 8 |/ a® - b2. See
the previous problem.

4. The equation (az -+ by + ¢) £ (ayx + byy -}- ¢) =0 ex-
{)}'esses the equality of distances of the point (z, y) from the given
ines.

5. If the initial straight lines are given by the equations in
the normal form

az + by + ¢, = 0, 2% - boy + ¢3 = 0,
then the equation of the locus of points will be
(a® + byy + 1) M & (aox 4 boy 4 ¢5) p = 0.
It is linear and therefore the locus of points is a straight line.

Sec. 2-6
1. See Exercise 4 of Sec. 2-4.
2. azy + byy - ¢ = — (azg 4- by +¢)  and  a (y; — y1) —

— b (x; — ;) = 0. The first condition expresses the fact that the
points are situated on different sides of the straight line and are
equidistant from it. The second condition cxpresses the location
of the points on a straight line which is perpendicular to the given
one.

3. The straight line is given by the following equation

(z —zg) — A (y — yg) = 0.
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The parameter A is determined from the condition
(7 — zg) — M (y1 — yo) = {{z2 — %) — } (¥ — v}

The choice of the sign depends on how the points are situated: on
one side or on both sides of the line.

4. Subtracting the first row of the determinant {rom its other
two rows and expanding the determinant, we get

zy oy 1
zy Yy 1|=(ry—xy) Us—¥1)—(¥2—y1) (F3—21)-
zz3 yz 1

The fact that the right-hand side is equal to zero means that the
point (z,, y,) lies on the straight line

(@ — 1) (s —v1) — (¥ — ) (@3 —a) =0,
joining the points (vy, yy), (z3 Y3).

Sec. 2-7
1.
Pl et P
Va@+02 Vet o
The choice of signs depends on the direction of the 2’- and y’-axes.
-1 , T—1
p— i/{’ y = VEJ.
The equation of the curve in the new coordinates:
2z'y’ = a?.

3. The point (zo, yo) has the same coordinates z,, ¥, in the
new system, Therefore, z,, y, are obtained by solving the following
system of equations:

Iy = T 4+ biyo 4 ¢1, Yo = @g2g + boYo + Co

Chapter 3
Sec. 3-1

1. Taking the general equation of the circloe in rectangular
Cartesian coordinales, pass over to the polar coordinates, substi-
tuting z = p cos 8, y = p sin 8. To oblain the coordinates of the
centre and the radius of the circle given hy an equation in polar
coordinates pass over to the rectangular Carlesian coordinates.
We get

2?4 y*+ 2e(@zcosa —ysina) b =0,
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The coordinales of the centre: r = —a cosa, y = a sin a. The
radius: R = y’a® — b. The coordinates of the cenlre in polar
coordinates: p=g4a, 0 =1 — a.

2. The distance hetween the points A (pg, 0;) and B (p,, 0,) can
be found by the law ol cosines as applied Lo the triangle OAB.
We get

| AB (2=} -1 p§— 20,05 COs (8, —0y).

3. go is the distance from the pole to the straight line,  is the

angle between the polar axis and the perpendicular dropped from

the pole onto the straight line.
4. The equation of the cardioid in polar coordinatoes:

p=~R (@ —cosb). .
5. The equation of the lemniscate of Bernoulli:
p=a V 2cos 260,
where a is half the distance between the [oci.

Sec. 3-2

1. The equation of the curve can be writlen in the form
Ap

P =TT Rcos0”
where

A=V a2fbE,  p=c/Vaib:, O =0+a.

This form is taken by the equation of the curve if the polar axis is
turned through an angle «. It is seen from this equation that the
curve is a conic section.

2. Since the position of the polar axis is not specified, the
cquation of the ellipse has the form

S B
P =T hcos O *
Substituting the coordinates of the three given points of the ellipse
in this equation, we get a system of equations for determining the
unknowns o«, A and p

3. Checked directly.
4. The equation of parabola:

- _
. p= 1—cos@

The inversion with respect to the pole of a polar coordinate
system is given by the formulas
’ Rz
0’ =6, P = -p— .
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This transformation of the parabola yields a curve represented by
the equation

p' = (R%e) (1 — cos 0'),

which is a cardioid.

Sec. 3-3

1. That the curve is a conic section follows from the definition,
since (z — zq)® + (y — y,)? is a square of the distance of the point
(z, y) on the curve from the focus (z,, y,), and ez 4 by 4 c is pro-
portional to the distance of the point (z, y) from the directrix.
The curve is an ellipse, parabola, or hyperbola depending on the

. <
magnitude of k/l/a2 + 822 1.

2. The distance of a point on the conic section from the focus
is prOﬁortional to its distance from the directrix. The distance
from the directrix, as the distance from a straight line, is linearly
expressed in terms of the coordinates of the point.

3. The problem of the intersection of a conic section with a
straight line is reduced to solving a quadratic equation which
cannot have more than two roots.

4. See Exercise 4 of Sec. 1-4.

5. See Exercise 5 of Sec. 1-4.

6. Let A (z, y) be a point of the locus. Its distances {from the
centres of the given circles will be | R + R, |, | R + R, |, where
R, and R, are the radii of the given circles, and R is the radius
of the circle which touches them. The signs (4 or —) depend on
whether the touching is internal or external. In any case either
the sum, or the difference of the distances is constant. The locus
of points represents an ellipse, a hyperbola, or a straight line.
If one of the circles degenerates into a straight line, the locus of
points is a parabola.

Sec. 3-4

1. Let
z? | y?
=t
be the equation of the ellipse (a is the semi-major axis). Let us turn
b
the zy-plane about the z-axis through an angle a, cos o = e

Then the circle z’2 4~ y’2'= a? in this plane is ortho.gonally pro-
jected into the given ellipse.
2. The equation of the hyperbola can be written in the form

(3+8) (5-4)=+
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%—F%:O, _.;;__y_ = 0 are the equations of its asymptotes.
For the point (z, y) of the hyperbola the factors in the left-hand
member of its equation are proportional to the distances of this
point from_the asymptotes.

3. See the preceding problem.

4. Divide the segments AC and CD into n equal parts. Let 4,,
and C,, be the points of division with number m. Find the coordi-
nates z, y of the point of intersection of the lines 4,,B and C,,4,
taking the line 4 B for the z-axis and the mid-point of the segment
AB for the origin. Eliminating the garameter m/n, show that the
points (z, y) satisfly the equation of the ellipse.

5. Make use of the hints to the preceding problem.

Sec. 3-5

1. The equation of the asymptotes of the hyperbola:
2 y?

= E=0

The equation of the tangent line:

Find the points of intersection of the tangent with the asymptotes.
Eliminating y, we get a quadratic equation for z
1 b2} b2z b2
2 — =Y —. 0 =
I (a2 y?,a‘i) 2

or, noting that
1 = b2
@ ylat T T yRa?

we have
7% — 2zgr - ¢ = 0.

Hence, it is seen that the product of the abscissas of the points
of intersection of the tangent with the asymptotes is xyz, = a2,
and the area of the triangle

S=i( 1 )(-iz—)sin&l,
2 \cosc cos o

where o is the angle formed by the asymptotes with the z-axis,

2. Eliminating y from the equations, we get a quadratic equa-
tion for z. The condition of touching consists in that the equation
has a multiple root, i.e. the discriminant of the equation is equal
to zero. The discriminant of the equation represents a quadratic
trinomial with respect to A. For the tangent lines to intersect at
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right angles in the point (z,, yo), it is necessary that Ah; = —1.
Therefore, cqualing the conslant term of the reduced equation for
A to —1, we obtain the equation of the required locus. It turns out
to be a circle.

3. Make use of the reasonings which helped to solve Lhe preced-
ing problem.

4. The equation of the pair of tangent lines to the ellipse:

(S 8rr) (B4 )~ (4 )"0

a?

5. The abscissa of the mid-point of the segment with the ends
at the point of intersection of the tangent line with the asymptotes
is equal to z,. Indeed, the abscissas of the points of intersection
are the roots of the equation

2?2 — 2zgz 4 a® = 0.

Hence, (z; 4 z,)/2 = z, (see the solution of Excrcise 1 of this
section).

Sec. 3-6

1. Find the coordinates ol the focus according to the geometrical
construction. Make sure that

c= ]/0.2——1)2.

2. The prool is analogous to the proof of the optieal property

of the ellipse.
3. The cquation of the parabola can be written in the form

(¢ — 0 + 3* = (az 4 B3,
where ¢ is the coordinate of the focus, and ax 4- b = 0 is the
equation of the directrix. Identifying this equation with the ca-
nonical equation y? — 2px = 0, find ¢, a, and b

4. See the solution of the previous problem.
5. Find the coordinatles of the foci and make sure that they are

independent of A.
6. The equation with respect to A

3 ¥3
aratE !

lor any non-zero zy, y, has two real roots Ay, Ay —a? <M <
< —b? < Ay. To them there correspond an ellipse and a hyperbola
passing through the point (zo, v,).

7. We have
| z3 oo
P Ty = a e T
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Subtracting these equalities termwise, we get

«3 + vt —=0
@F k) (@+hg) T (OP4A) 02 HAg) T

which is the perpendicularity condition for the tangent lines
Ty Y¥o p)

PR T e W P

YYo
=1.
T+,

Sec. 3-7

1. The slope of the diameter drawn through the point of tan-
gency k' = —b%¥a%k.

2. The direction of the diameter drawn through the point
(zo, yo) is conjugate to the direction of the chord.

- 8. See Sec. 1-5. The conjugate directions correspond to the
values of the parameter ¢ differing by the angle n/2.

4. When projecting with a pencil of straight lines, parallel
lines turn into parallel Jines and the mid-point of a line segment
turns into the mid-point of the segment. The conjugate diameters
in a circle are perpendicular. The area S of a figure and the area

of its projection S are related as follows: S = S cos a, where a
is the angle between the plane of the figure and the j:lane of pro-
jectlion.

5. Sec the hint to Exercise 4.

6. See the hinl to Exercise 4.

7. Represent the ellipse as the projection of a circle.

8. Make use of the hint to Exercise 4. It is possible 1o inscribe
a triangle in an ellipse so thal the tangent line at each of its ver-
tices is parallel to the opposite side. Here one of the verlices may
be taken arbitrarily.

Sec. 3-8

1. Expand the left-hand member of the equation into a product
of linear factors.

2. The curve is situated inside the parallelogram defined by the
intersection of the two bhands:

laz+by+c| < V'E,
|aw+By+v < V.

3. Take the bisectors of the angles formed by the straight lines
ar 4+ by + ¢ = 0, az 4+ Py + y = 0 for the new coordinate axes.

4. The problem is reduced to the previous one by factoring the
left-hand member of the equation into two linear co-factors.

5. See Sec. 1-6.

6. The second-order curve

ax® 4+ bay + cy? +dz + ey = 0
15—0406



526 Analytical Geomeiry

allows a parametric representation

_ d-+tet _ dt+ et? . .
:__m, V=Tt aE (Exercise 5 of Sec. 1-5)

Then see Sec. 1-6.

7. See Sec. 1-6.

8. For the points 4; both terms of the left-hand mewmber of the
equation vanish. Take an arbitrary point A, on the curve y at which
Agqllpellys = 0. Put

= Laa%16%35
Cgqogys |Ag "

9. Make use of Exercise 8.

Chapter 4
Sec. 4-1

1. When all the vectors arc turned through an angle of 2n/n,
their sum is also turned through the same angle. But as a result of
this rotation the system of vectors transforms into itself. Therefore
the sum is equal to zero.

2. For the point of intersection of the medians (0y)

OgA+0,B+0,C=0.

For any other point O this sum is equal to 30_50.

3. The equality expresses a well-known theorem of elementary
geometry. The sum of the squares of the diagonals of a parallelo-
gram is equal to the sum of the squares of its sides.

4. Check directly.

5. The sum of vectors emanating from a point of the plane a
and directed in ome half-space relative to this plane is a vector
directed in the same half-space.

6. The system of vectors r;, with a common origin at point
(0, 0) and the terminal points at point = (m8, rd) is situated sym-
metrically about the point (0, 0).

7. For the origin the sum of the vectors is equal to zero due
to the symmetry of the system of the vectors. For any other point O’

it is equal to nO’0O, where n is the number of vectors.

Sec. 4-°

1. If », and r, are non-zero and non-parallel vectors, then the
sum Mry; 4 Agry is equal to zero il and only if A, = 0, A, = 0.

2. Represent one of the vectors in the form of a linear combi-
nation of two others.

3. Construct a triangle in which onc side is represented by the
vector r, and two other sides are parallel to the vectors »; and r,.
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Sec. 4-3

1. Multiply the vector cquality scalarly by the vector 4,4,
and the vector perpendicular Lo it.

2. Ma* - 2hp (ab) 4- p2b? = (ha 4 pb)?.

3. Any three vectors parallel to one plane are linearly depen-
dent, i.e. therc exist numbers Ay, Ay, Ag not all equal to zero,
such that

Mry + Mgy + Agrs = 0 (see Exercise 3 of Sec. 4-2).
Multiplying this equality scalarly by ry, ry, r;, we get

Ay (171) g (2179) - Mg (r173) =0,
M (290)) Ay (1g7°5) - Ag (ry7°5) =0,
Ay (rg2y) + Mg (375) + Ay (2757°5) = 0.

This system of equations wilh respect to Ay, A,, A3 has a non-trivial
solution. Therefore the determinant of the system is equal to zero.
4. See the hint to Exercise 3. )
5. See the hint to Exercise 3.
6. See Exercise 5.

Sec. 4-4

1. The vectors @ X b and ¢ are parallol.

2, The vectors (@ X b) X ¢ and bp(ac) are equal by abhsolute
value and are in the same direction.

3. Represent the vector @ in the form of a sum of two vectors
ove of which is parallel and the other is perpendicular to c.

4. Use the results of the three previous exercises.

5. If @, b, ¢ are vectors with a common origin at the vertex of
the pyramid and whose terminal points are at the vertices of its
base, then

S=%|(a—b)x(a—c)|.

Sec. 4-5

1. (@ X b) X ¢ = b (ac) — a (bc). See Exercise 4 of Sec. 4-4.

2. Take for a, b, ¢ the vectors with a common origin at the
centre of the sphere and whose terminal points are at the vertices
of the spherical triangle.

3. Use the formula of Exercise 4 of Sec. 4-4.

4. Use the identity

(@ X b) X (ecXd)+(cXd)X(a@Xb)=0.

5. The vector r allows the representation r = Aje; + Agey |
+ Ages. Determine Ay, A,, Ag, multiplying scalarly this equalily
by t%e vectors e; X €y, €5 X €3, €3 X €.

15%*
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6. See Exercise 5.

7. The vectors ¢; X €5, ¢5 X €5, ¢3 X ey are linearly indepen-
dent. Represent the vector » in the form

r= 2 (ey X €5) | hy (€3 X €) + Ag (€1 X €y).

Multiplying this equality scalarly by ey, e,, €3 ind Ay, Ay, Ag.

8. Represent the solution in the form

z=27 (b Xe)J A (¢ Xa + Az (@ X b).

Multiplying this equality scalarly by e, b, ¢ find A, Ay, As.

Sec. 4-6

See Exercise 5 of Sec. 4-5.

. Sce Exercise 7 of Sec. 4-5.

. Use the identity of Fxercise 3 of Sec. 4-5.
. Use the identity of Exercise 3.

6. Use the identities of Exercises 4 and 3.

QUADN DD b=

Chapter 5
Sec. 5-1

1. (a) The points for which z = 0 lie in the coordinate plane
passing through the y- and z-axes; (d) the points for which z = 0
and y = 0 lie on the z-axis.

2. Eight points.

3. The points are situated inside a parallelepiped bounded by
the planes z = +a, y = +b, z = *e.

4. The coordinates of the vertices of the parallelepiped (g, &,, €3),
where ¢, €,, €3 take on the values 1 or 0.

5. If the point 4 (z, y, z) when rotated through an angle of
n/2 is carried into the point 4’ (z’, y’, z’), then

—> - -, — —>
(OA-e)e+0AXe=04", e=04,/|04,)|.
6. See Exercise 5. In the case of an arhitrary angle of rotation

(0_:4 ce) e 04 cos o + (5:4 X e) sin o = 0A’.

Sec. 5-2

1. The square of the distance between the points 4 (z, y, 2)
and 4’ (z', ¥', Z)

A4’ =A{z—a)e, + (W —y)ey+ (z—7) e} =
=@—2) -y + =)+
+2(z—2)Y(y—y)cosy+2(y—y')(z—z)cosa 4

+2(z — ') (z — z') cos B.
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2. The centre of the circumscribed sphere is equidistant Irom
the vertices of the tetrahedron.

3. The coordinates of the mid-points of the line segments joining
the mid-points of any two opposite edges of the tetrahedron:

4 ’

. =y1+yz+ys+y4
4 1]

.= 23425423124
=7

4. The straight lines inlersect at the centroid of the tetrahedron.
5. A point wilh the coordinates z, y, z lies on one side with any

vertex A; relalive to the plane containing the opposite face.
6. If the vertices of the triangle are 4,, A4, A3, then

{1, = —
§ = 5 | Ady X A4y .

7. Show that by imeans of elementary transformations the
determinanis

z, Y %z 1
1 N1 5
Iy —Z) Yo—Y1 33—3 1
Zs Y2 Zp
Tg—x1 Ys—Y1 %2321 |, 2 V. 2. 1
Tg—Zy Yg—Y1 24—21 3 Ys %
Iy Yg 24 1

can be converted into each other.
8. See Exercise 7.

Sec. 5-3

1. The equation can be written in the equivalent form
2+ a4+ W+ 0P+ @+ =a + B4 & —d;
the coordinates of the centre: —a, —b, —c; the radius of the sphere:
(a® 4- b L ¢ — d)1/2.
2. The coordinatles of any poinl satisfying the equations f, = 0
and f, = 0 also satis{y the equation

Mf1 4 Aofp = 0.

3. The surface is generated by straight lines which are parallel
to the z-axis and intersect the zy-plane along the curve specified
by the equation ¢ (z, y) = 0.

4, The eqnation ol the cone:

22 = (2® 4 y? + 22) cos? «,

where o is tlie angle between the generatrix and the axis.
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5. The curves y; and 9, can be specified by equalions in para-
metric form:

Tw:z=u, y=0, z= au?
Yo:z2=0, y=v, z=5bv

The surface generated by the mid-point of the line segment with
the end-points on y; and 7y, is represented by the equations:

u v au?-- bv?
=g, ¥VEm. ST
6. The curves can be represented parametrically:
Vwizx=u, y=a, z=Ff(u),
Yoiz=u, y=2=5, z=¢ (u).

The equation of the surface:
s=u, y=@L—vatvb, z=(1—0)f+ v

7. ¥/ 2* + ¥ is the distance of the point on the surface from
the z-axis.

8. This is a cylindrical surface with the gencratrix parallel
to the z-axis. It passes through the curve, since the equation of the
surface can be written in the equivalent form

(f (&) —2) — (¢ (y) — 2 = 0.

Hence it is seen that a point which satisfies the equations z = f (z)
and z = @ (y), satisfies also the equation f (z) — ¢ (y) = 0.

Sec. 5-4
1.
!
2 = @ + by + ¢,
Y = ayz - byy + ¢y,
2 =z
2.
a a a
cosa:T”’——-' cosfp =—=3L cosy = ——2
V agqa33 V aggar; Vaga,,

See Exercise 1 of Sec. 5-2.
3. See Exercises 5 and 7 of Sec. 4-5.
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Chapter 6
Sec. 6-1

1. An arbitrary point of the plane is equidistant from the points
(331, Y1y zl) and (‘”2, Yoy ZZ)“
2. The system of equations
azx-+by+ecz-+d;=0,
az-+by+cz+dy;=0, d; + d,,
has no solution. Therefore the planes do not intersect.
3. The locus consists of two planes
ax 4 by + cz + d + (az 4 Py + yz 4 6) = 0.
4. Any solution of the system of equations
f(z, v, 2)+az+by-+ey2-+dy =0,
f(z, ¥y 2)Fayz+boy-tegz+dy=0
is a solution of the equation

(a2 + by + 1z + dy) — (a7 + bay + €32 + dg) = 0.

5. For &k 5= Md + ub the system of equations specifying the
planes is incompatible.

6. See Exercise 4.

7. See Exercises 6 and 7 of Sec. 2-1.

8. The equation of any plane passing through the line ol inter-
section of the two given planes is written in the form

(az + by - ¢z - d) (azo + Byo + 230 + 6) —
— (@z 4 By 4 vz + ) (azo + byo + €20 + ) = 0,

where (zq, o, 20) is an arbitrary point outside the line of inter-
section.

9. See Exercise 8 of Sec. 5-2.

Sec. 6-2

1. The plane intersects the positive semi-axis z (y, z) il d/e < 0
(d/b < 0, dlc < 0, respectively).
2. The volume of the tetrahedron:
1] 48
V=% |-

6
3. The set of points in space satisfying the condition

lzl+1yl+1z2] <a

is the intersection (the common portion) of the hali-spaces specified
by the inequalities

Tz tytz<a
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4. The plane symmetrical to the plane ¢ about the zy-plane is
specified by the equation
az 4 by —cz 4+ d = 0.
The plane symmetrical to the plane o about the origin is given by

the equation
—ar — by —cz - d =0,

5. A plane parallel to the z-axis has no z in its equation. Con-
sequently, the parameter A is determined from the condition

¢+ yA = 0.
6. The parameters A and p are determined from the conditions

a; + hay + pag =0, by + Aby + pby = 0.

See. 6-3

1. The distance between the planes
6 — l dl—d2 I
See Exercise 2 of Sec. 2-5.

2 2 °
3. 1f the palaneg are given by equations in the normal form
% 4 by 4 ¢4z 4 dy = 0, ast - byy 4 coz 4 dgy = 0,
then the locus of points is represented by the equation
a7 + by 4 €1z + dy = A (a7 4 boy + €9z 4 dy) = O,

hence, it consists of two planes.
4. See Exercise 1.
5. Pass over to the normal form of the equation of a plane.
6. See Exercise 1 of Sec. 2-5.
7. 1f the equations of the planes are reduced to the normal form,

then

12 = az + by + ez + 4y,
Ly’ = apz 4 byy + ¢z + dy,
tz' = ayx 4 bgy + cgz 4 da.

Sec. 6-4

1. The vector (a, b, ¢) is perpendicular to the plane. The angle o
formed by the plane with the z-axis is dctermined [rom the con-
dition
[a]

Vertrra

sino =
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2. The angle formed by the plane with the zy-planc is dolep
mined from the condition

1
ViTrre

cos A=

3. See LExercise 2.

4., The plane intersects the z- and y-axes at equal anglew |f
laf=10bl.

5. The plane specified by the equation a (x — zo) 4 & (y - 1)
-+ ¢ (z — zy) = 0 passes through the point (z,, yg, 29). The pural-
lelism condition of planes is fulfilled.

6. The plane given by the equation

T—zy Y—yYy 2—12
ay b1 Ccy
ag b, csa

:0,

passes through the point (zg, yg, zo) and is perpendicular to Lhe

vector

7. The parameters A and p obey the condition
(May + pag) a 4 (Aby + pby) b 4 (Aey + pey) ¢ = 0.

8. For any vector n (g, b, c) there can be found a plano witl
the normal n in the pencil of planes. To this end it is necessary Lo
take the parameters A, Ay, Ay satisfying the conditions

May+Agag+2ga5 by Myby+Aghs —

a; b
as by

by ¢
by ¢

61 @

’ C2 a2 ’

a - b
— Aieg 4 Aaca 1 Ageq
¢
Sec. 6-5

1. The straight line intersects the z-axis (y- or z-axes) il %

=% (%:% , “;—":%, respeclively ) The line is parallul
in the plane zy (yz, or zz, correspondingly) if m = 0 (k= 0,1 = (),
respectively).

2. TForm the equation of the locus of points, taking the equations
of the planes in the normal form.

3. The locus of points equidistant from two vertices of Lho
triangle is a plane. The required locus is the intersection of (wo
planes, i.c. a straight line.

4. The straight line specilied by the intersection of the plauo
y = A, 2 = alz lies on the surface, since the points of this lino
salisfy the equation of the surface. The straight line specified by
the cquations ¢ = p, z = auy also lies on the surface.
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5. The fact that the determinant is equal to zero is the con-
dition of compatibility ol the system of equations

ayz+ b1y +eyz2+dy =0,
ayx by -+ coz-+dy =0,
agr+bgy+cy2+dy =0,
a4+ byy+cyz-+dy=0. .

This syslem is compatible, since the straight lines intersect.

Sec. 6-6
1. The vanishing of the determinant means that the vectors
(:C, - a:", y’ - .l/”’ 7 — z”)i (klv 2,1 ’n‘,)i (k”i l”’ m’”)

are parallel to the plane. Hence, the straight lines are either paral-
lel, or intersect.

2. If A’ and A" are the points on the skew lines and e’, e” are
the vectors indicating the directions of the lines, then the distance
between the skew lines is

—
e’ xe” A’_;i”= + (e'e"A’A")

0= £ —Z—— S——rr.
|e” X e”|

—IGIXG”I

3. The vector indicating the direction of the line given by the
equations

812+ byy + cyz+d; =0,
ayz+byy+coz+ds =0,
has the coordinates
b1 1
bg Co

¢ 4
€y aj

a; by
a; by

’ ", .

4, See Exercise 3.
5. The equation of the conical surface:
L(r—x¢) &+ (y—¥o) b+ (3—3¢) c]? _
a2 -

= [(e — 2¢)2 4 (¥ — ¥o)2 - (2 —2p)?] sin2 .

6. See Exercise 3.

7. Let 4 (z, y, z) be a point on the conical surface different from
the vertex. Find the coordinates of the point of intersection of the
element passing through the point A with the plane az 4 by +
-E cz 4- d = 0. Subslituling these coordinates in the equation of
the sphere 2? - y2 -|- 722 = 2Rz, we obtain the equation of the
required conical surface. The intersection of the conical surface
with the zy-plane is a circle.

8. See Exercise 7.
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Sec. 6-7

1. Ii the straight lines arc given by the eqguations

’ "

z—a' _ y—y' _ z—z r—z" __y—y" z—3"
k/ - lr - ml y ku - ZII - mu ,

then the plane equidistant (rom them passes through the point
with the coordinates
xl+$u y'“l-!/" z'—i—z”
P 2 2

parallel to the vectors (&', I/, m'), (", I", m").
2. The plane specified by the equation

air+by+eztdy — a3z boy Fcpz-i-dy
a3Zg+biYoFcrzo+d1  aaTot+bayotcaZotda

passes through the given line and the point (x4, yo, 20), not lying
on this line.

3. The vector (z' — z9, ¥ — Yo, 2 — 39) X (k, I, m) is per-
pendicular to the required plane.

4. Any straight line intersecting the two given lines can be
represented as the intersection of two planes one of which passes
through the first line and the other through the second.

5. The surface specified by the equation of the form cp( % , % )=
= 0 is generated by the straight lines passing through the origin,
since, along with the point (z, y, z), any point (Az, Ay, Az) satisfies
the equation. The surface intersects the plane z = 1 along the
curve ¢ (z, y) = 0.

Chapter 7
Sec. 7-2

1. The surface z = a2 + 2ay52y | ag0% 4 2032 4 2a a
represents an elliptic parabol—gid (hzyperii)olic pejraboloic-lij paggb_zl)‘lic
cylinder).

2. The left-hand member of the equation is factored into a
product of two linear co-factors.

3. The equation thus obtained is satisfied by the coordinates
of the points on the curve along which the plane intcrsects the
surface.

4. See Lxercise 3.

5. Form the equation of the conical surface, taking the given
point for the origin and the plane containing the curve for the
plane z = const. See Exercise 5 of Sec. 6-7.
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6. The coordinates of the common points of the surfaces satisly
the equation f (z, y, 2) @ (zo, Yoy 20) — @ (2, ¥ 2) f (20y Yo, 20) = 0.
The point (g, yo, 2o) also satisfies it.

7. The equation of the surface is a corollary of the equations
of the straight lines. It is obtained by eliminating the parameter
A from them.

8. A second-degree surface. See Exercise 7.

= ()4 ()’

c

Sec. 7-3

1. The foci are found on the z-axis at a distance y ¢z — a?
from the origin.

2. The intersection of the ellipsoid with the plane is at the
same time the intersection of these planes with the sphere 22 + »%
+ 224 p=0.

3. The required points in space are situated inside the ellipsoid

z2 y2 22
wrEta=t

4. Eliminate the parameters «, v and pass over to the equation
of the surlace represented in the implicit form.

5. The surface in question is an ellipsoid. Make use of the
boundedness of the surface.

Sec. 7-4

1. See Exercise 2 of Sec. 7-3.
2. See Exercise 5 of Sec. 3-6.

Sec. 7-5

1. The focus of the paraboloid coincides with the focus of the
parabola z = y2/a® in the yz-plane.

2. Consider the projection of the section on the zy-plane. See
Exercise 2 of Sec. 7-3.

Sec. 7-6

1. Make usc of the fact that the vectors (A, p, v) and (z, y, 2)
form an angle a.

2. I[ A is the projection of the point A (z, y, z) on the line
% %:%,mm(ﬂﬂ+R%4Mﬁ Express |04 | in
erms of the triple scalar product of the vectors (A, p, v) and (z, y, 2).

(=g
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See. 7-7

1. Consider the projection of tho line of intersection on the
xy-plane. See Exercise 3 of Sec. 7-2.

2, The first family: z = A, z = ahy. The second [amily: y = p,
z = apz.

3. A hyperbolic paraboloid.

Chapter 8
Sec. 8-1

1. If the linear co-factors are independent, then introduce new
variables
Ty = 1%y + ATy A @55 + ATy,
z3 = 0121 + baZy + baTs + DaZy,
T3 = T3, Ty = Z,.
The discriminant of the transformed form is obviously equal to

Z6r0.
2. In the case of independent linear forms

2 a;x;, 2 bizi, 2 i%i, Z d;z;

introduce new variables

,
zy= Z a;ri, To= 2 bizi, Ty= 2 Cixiy Ty== 2 d;z;.

See. 8-2

1. =a+tc¢, Iy=ac—b% I[3=0, I, = acy?.
2. Introduce new coordinates, taking the plane az - by J-
-+ ¢z = 0 for the coordinate plane.

Sec. 8-3

1. The condition of decomposition of the curve: | a;; 4 Aby; | =
= 0. For the points of intersection of the curves both terms of the
left-hand member of the equation of the curve are equal to zero.

2. Choose the parameter A so that the equation

agy® + a7y + a52% 4 agz - ay A (y —2%) =0
is decomposed into a product of two linear co-factors.
L pe— 18
2V =1, 2(V =T

. i, 2l
4. Cl:——l/‘l-——[—.i_,—, 6= 1112 .

3. a=
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Sec. 8-4
1. Take the bisector planes for the planes

az + by 4+ ecz24d=0, a2 byy4ez4+d =0
for the coordinate planes.
2. Find I, for the canonical equations of the surflaces.
3. Find I, and I, for the canonical equations of the surfaces.

Sec.§8-5

1. The origin satisfies the equations F,, = F,, =0. Therefore
ais = a3y = 0. The constant term ol the equation aj, is deter-
mined by comparing the invariants I; = I;. The cocllicienls aj; lor
i, j < 2 are equal to a;;.

2. See Exercise 1.

Sec. 8-6

1. Take the plane az 4- by + cz = 0 for a coordinate plane.
The axis of the cone is perpendicular to this plane.

2. The diameters of the parabola are parallel to the straight
line az 4 by 4 ¢ = 0. The axis of the parabola is conjugate to
the direction a : b.

Sec. 8-7

1. The asymptotes: az + by + ¢ =0, a2z + by + ¢, = 0.

2. The asymptotes: A (az + by + ¢) &+ vV —Ap (ax -+ by +
+ ¢) = 0.
Sec. 8-8

. Use the canonical form of the equation of the surface.
. See Sec. 3-5.

. See Exercise 2.

. See Exercise 4 of Sec. 3-5.

. These straight lines are rectilinear gencratrices.

. See Exercise 7 of Sec. 3-6.

DTN O -

Chapter 9
Sec. 9-1

1. The formulas of the orthogonal transformation under which
the zy-plane gocs into itself:

o r__ I e
T =anZ A Gy + A1y, Y = AT A Ggpy + gy, 2 = 275
2 2 2 3 —
afy + a5 = 1, ajp + afy =1, ayay; + anay, = 0.

2. The coefficients a;, ay, a4 are proportional to A, u, v;
T = B4 = Q34 =
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Sec. 9-2

1. The formulas of the alfine transformation:

T =24 (23— 1) ¢4 (@3 — 7)) ¥ + (¥4 — =) 5
YV =p+W—ya+ Ws— vy + Ws— v 32
2 =214 (B —z) 24 B —2) ¥ + (s — 2) %

2. Solve the equations Az = az’ + by’ 4-¢, py = a2’ +
4+ byy’ + ¢; with respect to z’ and y'.

Sec. 9-3
1. The zy-plane goes into the plane

' = a3u 4 390 + a1, Y = anU | Qg0 + ayy,
2’ = agi + G350 4 agq;

u, v are parameters.
2. Thg z-axis goes into the line z' == ayt - ay4, ¥’ = agyt -
+ a4, 3 = agt - ag,; ¢ parameler.

Sec. 9-4

1. Any three points not lying on a straight line can be carried
by the affine transformation into any three poinis not lying on a
straight line.

2. It is sulficieni to carry three vertices ol the parallelogram
into three vertices of a square which is always possible. Not any
quadrilateral can be transformed into a square by the affine trans-
formation. The opposite sides of a quadrilateral must be parallel.

3. The system of equations must be compatible

T = a4 oY | 0192 4 G4, Y = @1T - AgoY - @g32 | ag4
3= 05T | a3y -} G332 | Gz

Sec. 9-5

1. The affine transformation preserves the conjugacy property.
2, The coefficients of stretching (compression) are equal to the
semii—axes of the ellipse (a;2 - b1y 4~ ¢4)% 1+ (agx 4 boy + c3)2 =

See. 9-6

1. The system of equations specifying projective transformation
is uniquely resolvable to within a common factor with respect to
the coefficients a;; if four points and their images are specified.

2. Using the projective transformation, carry the points A, B, C
into the points —1, 0, 1 on the z-axis and express all anharmonic
ratios in terms of the coordinate § of the fourth point (D).
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Sec. 9-7
1. Solve the system with respect to z;, z;,

.
Ayry==ayzy -+ b5 125
Aoy = ayz] + byxs+ coxy

v — ’ .4
Mgy = ag7] + bgwy + c575.

2. The straight lines intersect at point (%, k,, kg, 0).

See. 9-8
For the first curve

Ty = a1y 4 agTy + 53, Ty = byxy + byty + bz, 3= x4
For the second curve
271 = ay®y) 4 75 + agrg + (0171 + Doz 4 baws), o = 2
225 = @@ 4 535 4 AgTy — (bry + baTy + baTy), ¥
See. 9-9

1. Compute the anharmonic ratio by passing over to the homo-
geneous coordinates.

2. Using the projective transformation, carry the straight line
BY into an infinitely distant line.

3. Make use of the properties of a complete guadrilateral.
See Exercise 2.

4. Draw an arbitrary straight line through the point of tan-
gency. The polar lines of the points of this stralght line intersect
on the required tangent line.

5. The polar lines of two points of the straight line intersect
at the required pole.

6. Compare the equation of the polar of the curve given by
the general equation with the equation of the polars of the vertices
of a self-polar triangle.

7. See Exercise 1.

8. Take the equation of the conic section in the canonical form
and form the equation of the polar line of the focus.

See. 9-10
1. The projective transformation
. z , y

T ax+byte? y =aa:+by—+-c
preserves the bundle with centre at the origin but transforms its
secants.
2. Make use of the correlative transformation of the plane.
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